Berlin forest Grunewald – former gravelpit area, type location for the mite Histiostoma palustre

von wirthstef

The city of Berlin geomorphologically consists of witnesses of the Weichselian glacier. The modern city itself and adjacent federal states represented end moraine areas with fluvio-glacial debris accumulations,  even well visible today due to a very sandy soil composition and a corresponding vegetation, creating landscapes, which partly almost look like from around the Mediterranean Sea.

Sands carried by the glaciers towards their end positions remained in partly huge layers with a thickness of up to 20 meters or more.

 

Gravelpit zone and its history

 

Also the area of the old gravelpit zone, called „Sandgrube im Jagen 86“, in the Berlin forest Grunewald is located inside such an end moraine zone, which was represented by plates belonging to the geological Teltow-plateau. In the time period between 1966 and 1983, gravel was excavated for industrial purposes. After 1983 a part renaturation was supported by nature conservationists. In 1992 in total 13 hectares of the former gravelpit area were allocated as nature conservation areas.

Other parts of this unique landscape remained accessible for the public. They represent today popular places for leisure and experiences of nature. Especially the huge sand dune is a popular destination for families with children.

 

Aerial videography of the gravelpit area in January 2019, copyrights Stefan F. Wirth. Please like my video also on Youtube, in case you like it.

 

 

Gravelpit zone and its ecology and biodiversity

 

The whole area – nature protection and accessible zones – show a complex mosaic of different  landscape types, offering numerous animal and plant species a well suitable refuge.  Neglected grasslands and dry meadows are surrounded by sandy areas free of any vegetation („dunes“) and moist osier beds and wetlands with ponds. The wetlands represent breeding grounds for numerous amphids. Lizards such as the sand lizard Lacerta agilis and snakes such as the grass snake Natrix natrix can regularly be observed. Sandy habitats offer space and specific ecological conditions for a interstitial fauna, consisting for example of different bee and sand wasp species.

In total the area bears more than 300 ferns and flowering plants, 16 breeding bird species, 7 amphibian species and 188 butterfly species.

 

My own scientific mite research in the gravelpit area

 

I was performing scientific research in that gravel pit landscape during the work on my phd-thesis between 2000 and 2005. My interest was (and one of my interests is still) focussed on specific organisms living around the shoreline of ponds.

The whole area of the gravelpit landscape is a good example for ecological changes that happen naturally with the ongoing time or even being affected by climatic changes. Between 2005 and 2018, the landscape partly changed significantly. Neglected grasslands and dry meadows covered less space originally, and instead several smaller ponds existed and offered amphibs and wetland inhabiting insects additional habitats. But some of the ponds already years ago dried out permanently. Their remnants are now covered by extended dry grasslands.

In former times of my phd thesis and even today, my research interests focus and focussed on the mite fauna in and around the muddy shorelines of ponds inside this former gravelpit area. The ponds are mostly surrounded by sapropel, a seemingly black and brownish mud, which is colored that way due to the incorporation metal sulfides. These muddy areas develop due to biochemical modifications of organic material in the absence of oxygen. Different insects, especially beetles live on top of these waterside habitats or even inside. Carabids of genera Elaphrus or Bembidion represent predators, while heterocerid beetles of genus Heterocerus are substrate feeders, presumanly with a preference for diatoms. Also water beetles of Dytiscidae and Hydrophilidae inhabit these habitats.

 

The mites Histiostoma maritimum and Histiostoma palustre

 

I discovered some of these beetles as dispersal carriers for specific mites. The dispersal strategy to take a ride on bigger animals to become carried from one habitat to another is called phoresy. Mites of the Astigmata represent typical phoretic organisms. I am scientifically specialized in a specific family of the Astigmata, which is named Histiostomatidae, and I discovered the mite species Histiostoma maritimum Oudemans, 1914 on Heterocerus fenestratus and H. fusculus as well as on Bembidion and Elaphrus species insside and on top of these muddy zones. I was the first acarologist, who ever studied the biology of this mite species. I furthermore discovered another mite species that was completely new to the scientific knowledge, and thus I scientifically described it as Histiostoma palustre („palustris“ = „muddy“) in 2002.

This species deserves particularly mention due to an unusual biological phenomenon: populations show a so called male dimorphism (better diphenism). Besides males with a „normal“ morphology, morphologically modified males appear. Their second legs differ from the typical shape of a mite and are modified into clasping organs. The function of these conspicuous organs could so far only be interpreted in the context of male to male competition conflicts for a female. In such situations, I observed the organs being used as arms against other males, against such ones with and such ones without clasping organs.

 

img_0015.jpgbest

Right modified leg of a male of Histiostoma palustre. Copyrights Stefan F. Wirth, 2002/ 2019

 

img_0016best

Modified leg of a H. palustre male in closed position. Copyrights Stefan F. Wirth, Berlin 2002/ 2019

 

img_0017.jpgbest

Underside of a H. palustre male with modified leg. Copyrights Stefan F. Wirth 2002/ 2019

 

img_0013.jpgbest

Asymmetry: male of H. palustre with only the right leg modified. Copyrights Stefan F. Wirth 2002/ 2019

 

img_0012.jpg best

Asymmetry: male of H. palustre with only the left leg modified. Copyrights Stefan F. Wirth 2002/ 2019

 

img_0014.jpgbest

Copulation of a Histiostoma palustre male with both-sided modified legs. Copyrights Stefan F. Wirth, Berlin 2002/ 2019

 

img_0010best

Details of a copulation with a modified male, copyrights Stefan F. Wirth, 2002/2019

 

 

Berlin, January 2019. Copyrights Stefan F. Wirth

Werbeanzeigen