biologe

Just another WordPress.com site

Kategorie: Forschung

Berlin forest Grunewald – former gravelpit area, type location for the mite Histiostoma palustre

The city of Berlin geomorphologically consists of witnesses of the Weichselian glacier. The modern city itself and adjacent federal states represented end moraine areas with fluvio-glacial debris accumulations,  even well visible today due to a very sandy soil composition and a corresponding vegetation, creating landscapes, which partly almost look like from around the Mediterranean Sea.

Sands carried by the glaciers towards their end positions remained in partly huge layers with a thickness of up to 20 meters or more.

 

Gravelpit zone and its history

 

Also the area of the old gravelpit zone, called „Sandgrube im Jagen 86“, in the Berlin forest Grunewald is located inside such an end moraine zone, which was represented by plates belonging to the geological Teltow-plateau. In the time period between 1966 and 1983, gravel was excavated for industrial purposes. After 1983 a part renaturation was supported by nature conservationists. In 1992 in total 13 hectares of the former gravelpit area were allocated as nature conservation areas.

Other parts of this unique landscape remained accessible for the public. They represent today popular places for leisure and experiences of nature. Especially the huge sand dune is a popular destination for families with children.

 

Aerial videography of the gravelpit area in January 2019, copyrights Stefan F. Wirth. Please like my video also on Youtube, in case you like it.

 

 

Gravelpit zone and its ecology and biodiversity

 

The whole area – nature protection and accessible zones – show a complex mosaic of different  landscape types, offering numerous animal and plant species a well suitable refuge.  Neglected grasslands and dry meadows are surrounded by sandy areas free of any vegetation („dunes“) and moist osier beds and wetlands with ponds. The wetlands represent breeding grounds for numerous amphids. Lizards such as the sand lizard Lacerta agilis and snakes such as the grass snake Natrix natrix can regularly be observed. Sandy habitats offer space and specific ecological conditions for a interstitial fauna, consisting for example of different bee and sand wasp species.

In total the area bears more than 300 ferns and flowering plants, 16 breeding bird species, 7 amphibian species and 188 butterfly species.

 

My own scientific mite research in the gravelpit area

 

I was performing scientific research in that gravel pit landscape during the work on my phd-thesis between 2000 and 2005. My interest was (and one of my interests is still) focussed on specific organisms living around the shoreline of ponds.

The whole area of the gravelpit landscape is a good example for ecological changes that happen naturally with the ongoing time or even being affected by climatic changes. Between 2005 and 2018, the landscape partly changed significantly. Neglected grasslands and dry meadows covered less space originally, and instead several smaller ponds existed and offered amphibs and wetland inhabiting insects additional habitats. But some of the ponds already years ago dried out permanently. Their remnants are now covered by extended dry grasslands.

In former times of my phd thesis and even today, my research interests focus and focussed on the mite fauna in and around the muddy shorelines of ponds inside this former gravelpit area. The ponds are mostly surrounded by sapropel, a seemingly black and brownish mud, which is colored that way due to the incorporation metal sulfides. These muddy areas develop due to biochemical modifications of organic material in the absence of oxygen. Different insects, especially beetles live on top of these waterside habitats or even inside. Carabids of genera Elaphrus or Bembidion represent predators, while heterocerid beetles of genus Heterocerus are substrate feeders, presumanly with a preference for diatoms. Also water beetles of Dytiscidae and Hydrophilidae inhabit these habitats.

 

The mites Histiostoma maritimum and Histiostoma palustre

 

I discovered some of these beetles as dispersal carriers for specific mites. The dispersal strategy to take a ride on bigger animals to become carried from one habitat to another is called phoresy. Mites of the Astigmata represent typical phoretic organisms. I am scientifically specialized in a specific family of the Astigmata, which is named Histiostomatidae, and I discovered the mite species Histiostoma maritimum Oudemans, 1914 on Heterocerus fenestratus and H. fusculus as well as on Bembidion and Elaphrus species insside and on top of these muddy zones. I was the first acarologist, who ever studied the biology of this mite species. I furthermore discovered another mite species that was completely new to the scientific knowledge, and thus I scientifically described it as Histiostoma palustre („palustris“ = „muddy“) in 2002.

This species deserves particularly mention due to an unusual biological phenomenon: populations show a so called male dimorphism (better diphenism). Besides males with a „normal“ morphology, morphologically modified males appear. Their second legs differ from the typical shape of a mite and are modified into clasping organs. The function of these conspicuous organs could so far only be interpreted in the context of male to male competition conflicts for a female. In such situations, I observed the organs being used as arms against other males, against such ones with and such ones without clasping organs.

 

img_0015.jpgbest

Right modified leg of a male of Histiostoma palustre. Copyrights Stefan F. Wirth, 2002/ 2019

 

img_0016best

Modified leg of a H. palustre male in closed position. Copyrights Stefan F. Wirth, Berlin 2002/ 2019

 

img_0017.jpgbest

Underside of a H. palustre male with modified leg. Copyrights Stefan F. Wirth 2002/ 2019

 

img_0013.jpgbest

Asymmetry: male of H. palustre with only the right leg modified. Copyrights Stefan F. Wirth 2002/ 2019

 

img_0012.jpg best

Asymmetry: male of H. palustre with only the left leg modified. Copyrights Stefan F. Wirth 2002/ 2019

 

img_0014.jpgbest

Copulation of a Histiostoma palustre male with both-sided modified legs. Copyrights Stefan F. Wirth, Berlin 2002/ 2019

 

img_0010best

Details of a copulation with a modified male, copyrights Stefan F. Wirth, 2002/2019

 

 

Berlin, January 2019. Copyrights Stefan F. Wirth

Advertisements

Months passing, but where has all the life gone?

I am standing in Berlin. The sky is a grey monotony. And while tiny waves gently wash around the little sandy beaches, tree skeletons surround the hidden bays on the Havel river. A semi-lucid vapor is covering the branchage of leafless treetops, already early in the afternoon. It is December in Berlin. The entire spectrum of bright summer colors is overlaid by muddy shades. Only larger groups of pine trees gleam in a greenish-black out of a giant cemetery of seemingly inanimate bodies of beeches, oaks, birches and maples. The cry of a heron in a far distance, but where has all the colorful and manifold life gone?

T. S. Eliot (1888-1965) wrote („Journey of the Magi“):

„A cold coming we had of it, just the worst time of the year  For a journey, and such a long journey: the ways deep and the weather sharp, The very dead of winter…“

Shakespeare (1564-1616) on Sonnet  97:

„…What freezings have I felt, what dark days seen! What old December’s bareness everywhere!…“

Seeming emptyness of a Forest-waterside landscape in winter, copyrights Stefan F. Wirth, Berlin December 2018. Please like my video also on Youtube, in case you really like it.

 

Bareness, emptyness, death, attributes being combined with winter since mankind exists. From the evolutionary point of view a serious problem that early humans  had to master. The seemingly emptyness was for them a very real lack of sources. They needed to prepare the winter time, food needed to be stored and protecting clothes to be stiched. There was no well organized international trade of goods, no fresh apples and pears in winter, no cheap winter jackets made in China. Winter meant to fear for the basic survival.

Today we live a different life, being independent from the seasons. Life today means for us to fear for the basic survival of our environment. What are the effects of a global climatic change? What the effects of our environmental pollution? What changes are independent from all that and just represent natural processess as they happened again and again since about 470 millions of years, when the first plants appeared on shore?

 

Most life does not disappear in winter, it just hibernates – alive!

 

The Berlin nature refuges around the forest Grunewald-terrain are interesting due to their complex mosaics of different habitats close to each other. Forest Grunewald in Berlin and the sandy beaches and bays along the Havel river offer space for lizards, an interstitial insect fauna, dry grassland visitors such as butterflies, wetland animals like frogs and newts, aquatic inhabitants like river lampreys, numerous bird species and inhabitants of wood in all kinds of decomposition stages such as bark beetles, longhorn beetles or hermit beetles.

 

Migration

 

Some animal inhabitants of the Grunewald/ Havel-area in summer migrate during the winter season, but most species stay. They hibernate and are even now in December still there.

 

Birds

 

Many birds show a strict migration behavior to avoid northern winters, others migrate in greater numbers, while some specimens stay, and some migrate only over smaller distances. Which of those migration behaviors is exactly performed by which bird species might depend on climatic conditions and is object of scientific research. NABU for example regularly starts projects, to which the general public can contribute with own observations. One of them takes place in early January and is named „Stunde der Wintervögel“ („the moment of winter birds“).

Common cranes Grus grus and greylag geese Anser anser normally migrate over bigger distances and numerous bigger routes towards southern winter refuges. Especially cranes are in summer for examples inhabitants of the Havelland Luch, thus prefer areas more western of Berlin. A trend was observed by ornithologists that more and more often, obviously corresponding with a global warming, troops of crane specimens stay instead of migrating southward.

Migration behavior of common cranes and greylag geese in Linum, autumn 2018, copyrights Stefan F. Wirth

Female of the red-backed shrike in Berlin (Köppchensee). The bird is a typical long-distance migrating animal. Copyrights Stefan F. Wirth, 2018

 

Butterflies

 

The red admiral butterfly Vanessa atalanta is known as a migrating insect. The „normal“ case is that migration from Southern Europe towards Central Europe is performed in spring. There, a summer generation develops and in autumn either tries to migrate back southward or to hibernate as adult butterfly, where it hatched, for example in Germany. But specimens mostly do not survive their tries to hibernate during our cold winters. This makes the admiral to a rare example of our summer-fauna, which over here partly indeed dies out before winter begins. The migration routes of populations throughout Europe is still topic of research. The migration behaviors seem to change corresponding to a global warming.

Admiral butterfly in Berlin, copyrights Stefan F. Wirth, 2018

 

River lamprey

 

Also the river lamprey Lampetra fluviatilis obligatory needs migrations over bigger distances. But these migrations do not correspond primarily with our cold seasons, but instead with the complexity of its life cycle. Larvae, which differ morphologically from adults, hatch in our freshwaters and develop as filter feeders within about three years, in which they  hibernate inside their aquatic freshwater habitats. They then migrate after a morphological metamorphosis towards the Sea. There they live as ectoparasites on fishes until they reach sexual maturity and then return into freshwater-rivers to reproduce and finally die. It is still subject of research, whether they return for their reproduction to the areas of their original larval development.

 

Hibernation

 

Sand lizard

 

The sand lizard Lacerta agilis  hibernates in hideaways, which are able to hold a temperature around 5°C. There they fall into winter numbness due to their unability to regulate their body temperature independently from the environment. Juveniles and adult genders start their hibernations  at different times.

Sand lizard juvenile, found in Berlin Grunewald/ Teufelsberg, copyrights Stefan F. Wirth

 

Frogs

 

Toads and frogs hibernate after finishing their metamorphosis, juvenile and mature specimens spent a diapause as a total numbness such as in lizards. Amphibians and lizards are poikilotherm, thus their body temperature corresponds to their environment (some monitor lizards Varanus were found to have physiological abilities for a limited self regulation of their temperature, which is an exception within the taxon big Squamata).

Marsh frog Pelophylax ridibundus, pool frog Pelophylax lessonae and edible frog Pelophylax kl. esculentus survive the cold season in hideaways, which maintain acceptable environmental temperatures. While pool and edible frog hibernate on land, the marsh frog spends its diapause in aquatic habitats. Skin respiration then plays an even more imortant role, which is why these frogs require a high availability of oxygene. The edible frog is even from the evolutionary point of interest, as it represents a hybride between two closely related species, namely marsh and pool frog. It is in many of its populations non reproductive with other hybrides and needs one of the parental species to reproduce. But interestingly triploid specimens of the edible frog sometimes develop in populations and bear the complete genomic information of one of the parental species. These edible frogs can reproduce with other hybrides They can be found throughout Berlin. Such specimens are difficult to be determined morphologically, as they resemble in their outer appearance either to the marsh or the pool frog.

 

Sand wasps

 

Insects hibernate in different developmental instars, if holometabolic, egg, larva, pupa and adults are options, if hemimetabilic eggs, nymphs or adults perform the winter diapause. Some insects can even hibernate in all of their developmental instars.

The quite common red-banded sand wasp Ammophila sabulosa for example is part of the insect interstitial fauna and does not practise brood care, but maternal care. Females built up several single nests up to 20 centimeters into the soil, each of them containing only one cell for the deposition of always one egg. As food supply they hunt caterpillars preferrably of Noctuidae, stun them with a sting and carry them to their nests, which will be closed with soil particles afterwards. The last brood hibernates as pupa or larva inside the nest.

Sand wasp Ammophila sabulosa in Berlin, copyrights Stefan F. Wirth, 2018

 

 

Grasshoppers

 

The grasshopper Sphingonotus caerulans is a thermophilic species, which is a typical inhabitant of sandy areas in Southern Europe. It also appears in Berlin. Its eggs are deposited into deeper soil layers and hibernate there.

Grasshopper Sphingonotus caerulans, male, found in Berlin (Köppchensee). Copyrights Stefan F. Wirth, 2018

 

terrestrial Isopods

 

The common woodlouse Oniscus asellus for example hibernates as nymph or mature adult in hideaways inside deeper soil layers, dead wood or compost. These terrestrial curustaceans become inactive, when colder temperatures appear. Specimens can live over several years (usually about two years).

An example for a woodlouse, in this case a mediterranean species of genus Porcellio, copyrights Stefan F. Wirth, 2018

 

Hibernating animal communities

 

Communities of different animal species often hibernate altogether. I focus here on inhabitants of micro habitats. Especially long living insect nests can bear greater numbers of cohabitants. But also deadwood or compost bear many different animal species side by side.

 

Ant nests

 

Nests of the red wood ant Formica rufa represent complex animal communities, as it is typical for ant nests generally. Besides ants and their brood noumerous nematode and mite species inhabit nest mounts of F. rufa. Additionally different larvae of other insect taxa can be members of the ant community, I even discovered the larvae of the green rose chafer sometimes inside red wood ant nests in the area of the Berlin forest Grunewald. Also several species of pseudoscorpions are known to science to be adapted for a survival in nests of F. rufa in Europe: commonly found are for example the species Allochernes wideri and Pselaphochernes scorpioides. Pseudoscorpion species of genus Allochernes are known to practice a dispersal strategy named phoresy. They use bigger and better motile insects as carriers and that way are transferred to new habitats. Besides ants, their suitable phoretic carriers seem to be dipterans. Also different mite and nematode taxa inside nests of the wood ant perform phoresy. A mite example is the species Histiostoma myrmicarum (Acariformes, Histiostomatidae), which seems to be carried by ants and eventually additionally also by other arthropodes.

The larva of the green rose chafer inside a nest of Formica rufa, copyrights Stefan F. Wirth, 2011

Mite Histiostoma myrmicarum (Astigmata) collected from its hibernation habitat in the soil underneath an old oak in Berlin forest Grunewald, copyrights Stefan F. Wirth, 2018

 

Formica rufa itself hibernates inside its nest in absence of eggs, larvae or pupae. Only the queen and workers remain during the cold season. Not much is known about other nest inhabitants. More research is needed.

Typical ant cohabitants (with Formica rufa) do not necessarily need to hibernate inside their ant nests. I collected deutonymphs of the mite Histiostoma myrmicarum in winter 2017/18 from soil (some centimeters deep) underneath an old oak in the absence of ants and their nest. The well scleotized deutonymph (phoretic dispersal juvenile stage) might represent the hibernation stage.

The advantage for organisms, living in ant nests, is a higher and constant temperature due to the ant worker’s nest-care-activities. Additionally the defensive behaviors of ants offer protection for those organisms being adapted (based on evolution) to survive inside ant nests.

Due to suitable temperatures, many organisms inside nests of the red wood ant might stay even active in winter. Interactions between ant nest-cohabitants can be very complex. An example is the Alcon large blue butterfly Phengaris alcon, being adapted to other ant species: Myrmica rudinodis and M. rubra. The caterpillar resembles an ant worker due to the morphology of its cuticle and the production of ant-similar pheromones. Ant workers fail for this imitation, carry the caterpillar into their nests and feed it. The butterfly’s larva hibernates inside the ant nest as larva, molts into pupa in the subsequent spring season and finally leaves the nest as adult butterfly. Still inside the ant nest, the caterpillar can become a victim of the parasitic wasp Ichneumon eumerus. Its female invades the ant nest, only after recognizing that caterpillars of the blue butterfly are indeed inside. It then confuses the antworkers due to the release of different chemicals and then attaches its eggs to the caterpillar. The wasp’s larva hibernates there and molts into its pupa inside the host’s pupa. The adult wasp afterwards leaves the ant nest.

Phoretic mites of the taxon Astigmata inside a nest of Myrmica rudinodis, found on island Usedom, copyrights Stefan F. Wirth

 

Bark beetle galleries

 

Numerous mite and nematode species live inside the galleries of bark beetles. Such a complex fauna is known for many bark beetle species. Additionally the larvae of different other insects can be cohabitants. Depending on the species, they can perform all kinds of life-strategies: being predators of adult bark beetles or their offspring or of other gallery cohabitants, they can also be microorganism feeders and prefer the bark beetle galleries due to its ideal warmth-isolation or due to the specific micro-climate that is created there by the activities of all different inhabitant activities. Besides animals, also fungi and bacteria contribute to that climate.

Bark beetle Hylurgops ligniperda and phoretic mites, copyrights Stefan F. Wirth, 2016

Wood associated nematode Diplogaster sp. found in the tree fungus Laetiporus sulphureus in Berlin, copyrights Stefan F. Wirth, 2016

Mite deutonymphs of the Histiostomatidae mites inside the galleries of the bark beetle Tomicus destruens in Italy, Vesuvio National Forest, copyrights Stefan F. Wirth, 2016

Bark beetle Ips typographus with some of its gallery-cohabitants, such as phoretic mites, found in SW-Germany (Saarland), copyrights Stefan F. Wirth, 2015

 

Furthermore the composition of species in a bark beetle gallery changes with an increasing age of a gallery. Secondary infections are often performed by other wood parasiting beetles, after the bark beetle brood finished its development and left the gallery. A secondary parasitism can for example be performed by longhorned beetles.

The bark beetle Dendroctonus micans for example infests several conifer species: Picea, Abies, Larix and Pinus. This bark beetle can hibernate in all its instars: eggs, larvae or adults. Adults can in spring sometimes be found in specific hibernation-chambers. In a research project with russian collegues, I isolated beetles of that species in the early spring season in Siberia (Russia) out of such a chamber on Pinus silvestris. Adjacent to attached substrate particles, I found nymphal stages of the phoretic mite Bonomoia opuniae, a species of the Histiostomatidae (Astigmata), which was even new to science at that time. I described this species, which I so far only know from those siberian samples. It is still unknown, whether it also appears in Central Europe.

The nymphal stages (protonymphs and tritonymphs) of that mite species might represent the hibernating instars. They were not fallen into a numbness after the collection and even remained active in a refrigerator, where my samples were stored subsequently for a while. I doubt that the mite in winter can pass through different generations as it would happen in a warmer climate, because the found mite nymphs appeared -also active- still rather weak in their cold environment. Thus I assume these nymphs to hibernate throughout the winter season. But there is still much research missing about the ecology/biology of bark inhabiting mites.

Adult beetles of Dendroctonus micans with deutonymphs of Bonomoia sibirica, Tyumen/ Siberia, copyrights Stefan F. Wirth, 2017

 

 

Berlin, December 2018. Copyrights Stefan F. Wirth

 

 

 

 

 

Phoretic Mites waiting on Ant Pupae

Greater numbers of pupae from a nest of the myrmecine ant Myrmica rudinodis are attached by phoretic mites, which wait for these pupae to hatch. They would then attach the newly developed ants to be carried around and dispersed this way. They this way had already occupied their later ants before, namely during their pupal stage, one could call this phenomen „pupa-guarding“. In my samples, I discovered two species of mites performing this pupa guarding behavior. Most abundant were deutonymphs of the mite Forcellinia wasmanni (Astigmata). But also individuals of a mite species of the Gamasina were repeatedly discovered sitting on pupae, where they were hiding between head, ventrum and limbs of the pupa. They even seemed to defend their pupae, when they felt disturbed, e.g. by my filming activities.

 

Ant pupa guarding by mitees, looking for a carrier for dispersal

 

These pupa guarding-findings concerning this ant and with these corresponding mite species might be new to science (so far I didn’t found literature indications) and thus need to be studied closer in the future in order to understand the whole context of behaviors. In the footage, two types of pupae are visible, pupae of the winged alates and those of workers. Mites generally prefered both, but especially the deutonymphs of Forcellinia wasmanni seemed to appear more often on the pupae of later workers. Most pupae had at least one deutonymph attached, rarely, there were found up to four individuals. This is different to what could be found on older workers. They on their ventral side can have 4-6 deutonymphs. Many workers seem to be covered with the deutonymphs, but I didn’t check more workers until now, so I can’t say, how many were without mites. It is unknown, how deutonymphs come to the pupae, whether they simply leave older workers for the pupa-guarding or whether they were waiting in the soil for the pupae to arrive (due to the brood caring activitoes of the ants).

Mite-Life inside an ant nest. Copyrights Stefan F. Wirth 2015/18

 

Astigmatid mite with a strict relationship to ants

 

The mite Forcellinia wasmanni is known to be strictly associated with ants (e.g. Türk & Türk 1957). It is clear that attaching young female alates would secure the dispersial of the mite into a new ant nest. It is not clear, which function the transport via ant workers can have. But Türk & Türk (1957) mention that the free living instars of Forcellinia wasmanni would feed on dead ants. Such a kind of microhabitat for the development is not unique in astigmatid mites. Some species within the Astigmata are known to have such preferences for decaying cadavers, but are then feeding on microorganisms, which grow on these (insect) cadavers. Ant workers might be ideal to carry mite deutonymphs to new cadavers, where they would leave and develop. Ants generally have a very well developed hygienic behavior. This guarantees the mites to get access to cadavers regularly. I do not know any other video footage, showing living deutonymphs attached to their carriers on such a magnification level as visible in this film. The original footage of these deutonymphs is much longer.

 

Morphology and behavior of the dislersal-instar, the so called „deutonymph“

 

The function of the proterosoma (dorsal shield of the forebody) is acting as a flexible structure, protecting the mouthpart-area (non-functional in deutonymphs) and the fore-legs, but being very motile and being easily pushed backwards (under the following hyterosoma-shield), when the mite lifts up from the surface of the ant pupa. I cannot state much more concerning the second mite, found on pupae, which is a species of the Gamasina. I discovered this phenomenon only on three of my pupae. Ant nests represent complex communities of organisms, to which fungae, other insects, mites and nematodes can belong. The samples visible in this film were collected in July 2015 on the German island Usedom inside a forest area between the villages Zinnowitz and Karlshagen. The ant nest was quite small. An ant hill was not visible.

 

Complexity of life in ant nests

 

The complexity of life within ant nests is a result of evolution. I am an enemy of creationistic movements, including all modern faces of creationism. Creationism stimulates carelessness und illiteracy in the believing people.

 

 

Berlin August 2015/ December 2018, copyrights Stefan F. Wirth

Male and female of Histiostoma sachsi and unsuccessful mating with a „stranger“

Mites of the Acariformes vary in very different forms and life-strategies. One taxon of very tiny and soft-skinned mites is named Astigmata. Within them the familiy Histiostomatidae is especially rich of species, most of them surely not yet described or discovered.

 

Modyfied mouthparts and a specific mode of dispersal

 

These mites feed on microorganisms using a complex mouthpart-apparatus with multifunctional abilities. They can be found in habitats, which dry out quickly. When it’s getting too dry, a specific instar of the mites takes a ride on insects or other bigger arthropods for dispersal to a new and fresh habitat ( strategy called Phoresy).

Histiostoma sachsi is one of numerous (often closely related) long haired (in females) species. It was originally in 1957 described from cattle-dung. I found it in compost.

 

Long upper-setation in females and tactile camouflage (mimesis)

 

Adult females are characterized by a long setation on their uppersides. They use them to hold parts of the old nymphal cuticle and soil particles on their backs. This seems to be due to a strategy named mimesis or camouflage. It’s a tactile camouflage as an optical sense in this kind of microhabitats plays almost no role.

 

Normal and unusual copulation position, trial of an interspecific copulation

 

Males mate their females via a dorsal copulation opening and thus need to ride on them. In H. sachsi, that copulation opening is located very close to the hind-edge of the body. That way it is even despite of the camouflage cover accessible. It seems even slightly being elevated out of the body surface in order to surmount adjacent soil particles. This is an adaptation of this particular species. It might share such morphological characters only with very closely related (not yet described) species In other members of genus Histiostoma, the copulation opening is usually more centered related to the hind body.

The copulation position requires that males insert their aedeagus („penis“) into the copulation opening. They additionally use their legs to grasp into the females body. That kind of leg arrangement and thus the whole copulation position can differ from species to species.

This is why copulations between members of different species already fail, because the right copulation setting does not fit, nor does the shape of the aedeagous. Nevertheless the phenomenon of unsuccessful trials for interspecific copulations can sometimes be observed in laboratory cultures. Such a trial is also visible in this video, where a male of Histiostoma feroniarum (also appears in my compost samples regularly) tries to mate a female of H. sachsi. It cannot even almost get in a proper copulation position and seems to hold on to the dorsal camouflage cover of the female. it could only remain in a transverse position related to the female body and thus not get access to the copulation opening, normal would be a longitudinal position with the sameame orientation of female and male.

Adult mites of the family Histiostomatidae (Astigmata) and a „false“ copulation. Copyrights Stefan F. Wirth, Berlin December 2018. Please like my video also at Youtube, in case you like it.

 

Chemical communication and chemo-sensitive leg setation

 

Mites of the Astigmata communicate and find their general orientation due to chemo-sensitive setae, mostly on legs I and II, which are named solenidia. They are even on the magnification level of my footage well visible on the male’s legs. Although a direct body contact is not necessary for a innerspecific communication by chemically interpreting scents produced from mite glands, the observed male in my video repeatedly was seeking for intense body-contacts and obviously „observed“ his conspecific while doing so with its first two legs. This might have intensified the perception of pheromones.

It showed this behavior also, when passing by the „false copulation-pair“ described above. It additionally seemed to invest power in its leg movements as if it would try to remove the „competitor“ on the female, in this case even belonging to another species.

 

Competitive fights between males

 

That mites of the Histiostomatidae can use their strongly sclerotized first legs to fight under each other for an access to a female is known to me from my older observations about the species Histiostoma palustre and Histiostoma feroniarum.

 

Origin of the compost samples

 

The compost samples were collected in SW-Germany (Saarland in October 2018). The footage was recorded in December 2018 in Berlin.

 

Berlin December 2018, copyrights Stefan F. Wirth

Habitat compost: Mite Histiostoma sachsi carries old cuticle and dirt as camouflage

My parents have a compost area in their backyards. I use it as reference habitat for two mite species of the family Histiostomatidae (Astigmata): Since I began my research in 2000, the compost regularly contained Histiostoma feroniarum with its typical male dimorphism. Since summer 2017 another species appears additionally regularly: Histiostoma sachsi. Both species do not appear under the same conditions. While H. feroniarum prefers fresher decaying material, H. sachsi on visibly older decomposed tissue. There mite be even more mites of the Histiostomatidae exist in this complex compost habitat, but under my laboratory conditions, only the two named species were so far successfully reared out of samles always again. Regarding the determination of H. sachsi on a species level, I was more careful in my comments to a former video (June 17), in which I named it Histiostoma cf. sachsi due to doubts about a correct identification. Meanwhile, also due to the morphology of the deutonymph, I determine „my“ compost mite as Histiostoma sachsi Scheucher, 1957. But it is still to emphasize that Scheucher described H. sachsi from cattle dung, not from compost. But generally, both habitats can sometimes share the same inhabitants.

 

Adult females carry their old cuticles and „dirt“ on their backs as tactile comouflage

 

Biologically conspicuous is darkish material, which especially adult females carry on their backs. Unlike males, females posses elongated setae on their backsides. These setae support the holding of material such as old cuticle and soil particles. In slide preparations, this cover usually appears amorphic and contains substrate from the mite’s environment. My video footage indicates that the basis of this cover is a retained old cuticle from the former nymphal instar . That this cannot easily be proven with the light microscope is due to the very soft and fine character of the cuticles in these mites. Remnants might become decomposed by microorganisms after a while.

Compost: the habitat of the mite Histiostoma sachsi Scheucher, 1957 (Acariformes, Astigmata, Histiostomatidae). Copyrights Stefan F. Wirth, please like my video also on youtube, in case you like it.

 

The phoretic dispersal instar, named deutonymph, in mites of the Astigmata controls its body position due to sticky leg endings and suckers on their undersides

 

Deutonymphs of H. sachsi represent one of my resent models to study mite-dispersal behavior. My research focus since a while concerns ultrastructure and function morphology of the deutonympal suckerplates and other structures to attach to insects for dispersal (this dispersal strategy is called phoresie). The anterior front-suckers on the suckerplate of the mite’s underside is extendable and very flexible, not only to find a suitable position on the insect carrier. When falling, the deutonymphs use it to lift their bodies up into a proper position again. Additionally they will try to get hold using „sticky“ lobe-shaped setae on the endings of legs I and II. Both is visible in my footage. The forelegs seem generally to make the first contact, when trying to get on a suitable carrier.

 

Deutonymphs of Histiostoma sachsi take a ride on other mites (Oribatida)

 

The suitable carrier of H. sachsi is unknown to me. Some astigmatid species have even a range of carrier-„hosts“. In my samples, deutonymphs at least attach to other mites, especially to mites of the Oribatida. This is in a very short scene visible in my video too.

 

Copyrights Stefan F. Wirth, Berlin December 2018

Microscopic wrack inhabitants: Mites (Ameronothridae), Protozoans, nematodes and Dipterans

Decomposing detritus (mostly dead algae debris) of marine organic material, laying onshore more or less close to the water line, containing seaweed or cadavers of aqatic animals, is named wrack. Wrack can appear under different kinds of ecological circumstances. In case, it would be in permanent contact with sea water, it might be mostly decomposed by marine organisms. But due to different reasons, wrack can land apart from a permanent sea water contact or even no sea water contact at all any more.

Here mostly terrestrial organisms with a tolerance for salty conditions would inhabit and decompose this piece of detritus. Sandhoppers (Cristacea) are known to switch between wracks of different conditions. They can for example carry mites or nematodes from one wrack habitat to another. Dead organic material generally always needs to be decomposed by living organisms, otherwise the whole ecological system would be harmed.

 

A specific kind of micro habitats

 

A small habitat, which would dry out after a while and thus exists only for a limited time, is called ephemere biochorion. Organisms being adapted to live there, must have adaptations, to leave their habitat by time to avoid desiccation. One option is a life strategy, which is named phoresy. Weaker organisms, unable to desperse themselves efficiently use other animals, such as winged insects, to take a ride on them to new habitats with suitable conditions for a development. Generally phoretic organisms can for example be represented by different groups of mites (e.g. Uropodida, Gamasina, Tarsenomidae, Scutacaridae, some Oribatida, Astigmata) and nematodes (Rhabditida).

 

Mites and nematodes

 

In case of wrack, decomposing close to the waterline, but without or only occasional water contact, Pellioditis marina (Nematoda, Rhabditida) is for example known as phoretic inhabitant along German coasts. Worldwide, crypitical sibling species of P. marina were meanwhile discovered. Depending on the exact situation of the wrack, also aquatic nematodes could appear there for a while. I couldn’t determine the nematode in my footage unfortunately at all, because I did not prepare slides of them enable a larger microscopic magnification. Phoretic mites can be associated with sand-hoppers (Amphipoda, Crustacea) and thus appear in wrack. Mites of the Histiostomatidae (Astigmata) were for example discovered in such a context by some researchers.

 

Mites of the Ameronothridae (Oribatida), sand-hoppers and dipterans

 

I so far never found them randomly, but also didn’t explicitely seek for histiostomatid species until now. My sample did not contain any Astigmata or I at least didn’t find them. Common inhabitants of decomposing wrack are oribatid mites of the Ameronothridae. This taxon with a worldwide distribution is charaterized by specific adaptations to deal as terrestrial organisms with (partly extreme) salty marine conditions. They are mostly algae feeders. Some species are known to appear in wrack. The sample, which I collected in context of the so called „Geo Tag der Natur 2018“ (Geo (journal) day of nature) in Norddeich Mole (East Frisian coast of Germany) contained many specimens (ca. 40, sample size of about 20×20 cm) of the Ameronothridae-species Ameronothrus sp.. My footage shows only one living specimen, as all had died until I began my filming activities.

Inhabitants of decomposing algae tissue along a beach at German North Sea, all copyrights Stefan F. Wirth

 

But I preserved several dead specimens for scientifc purposes. Ameronothridae might, according to literature, use phoresy via birds, but also might disperse themselves over smaller distances, due to their well developed cuticle, protecting against desiccation, and their rather fast locomotion abilities. Larvae of different species of flies (Diptera) developed inside my sample and hatched under my laboratory conditions after about two weeks. They intensively contributed to a fast decomposition of that organic marine tissue. Sand-hoppers were by the way not found at all.

 

Bacteria and protozoans

 

Bacteria are most important decomposers. But the function of protozoans (here e.g. Ciliata) in regard to the process of wrack degradation, which could still be isolated alive after about two weeks of decomposition,  is unknown to me. My sample was found almost on top of a dike, meters away from the highest tide in that area and consisted mostly of the seaweed Fucus vesiculosus.It also contained sea gull feathers.

 

Berlin/ Norddeich Mole June/August/November 2018 Copyrights Stefan F. Wirth

A scarab beetle’s larva and pupa: habitats for mites and other organisms

The micro-world is complex. Its habitats intertwine themselves, some even are unusual, because they are formed by single animal individuals. An example is a holometabolic insect, here the tropical rose chafer Eudicella colmanti. The larvae of my specimens are covered with deutonymphs of an astigmatid mite (Acaridae, eventually Acarus sp.).

This makes the beetle larva to a habitat for these mites, although the mites in this case don’t feed or reproduce there. They instead are „only“ passengers on their transportation to a new „real“ habitat, where they become adult, feed and reproduce. This strategy to be carried by other organisms from one living place to another is called phoresy.

The situation in my terrarium might be artificial in the sense that mites are putatively not of tropical origin as the beetles (reared in Germany) and thus do not originally „belong“ to the beetle species. The mites might have reached into the terrarium via fruit flies or similar native organisms or via the terraria of the online shop, where they were bought. But the mite deutonymphs show a distinct affinity for adult beetles and their larvae nevertheless, which they attached in great numbers (not the pupa). The microscopic footage of the mite deutonymphs contains activities of their genital openings, located close to the sucker plates on their undersides.

They occasionally open and close and discharge secretions or water. This might be due to osmoregulation and/or in order to prove the adjacent sucking structure with moisture for a more stable hold.

The larva after some months built its pupa chamber, consisting of soil particles and larva secretions. Tese pupa chambers offer on their outer sides obviously enough nutrients for collembolans, which appeared there in greater numbers, especially on an older chambers with its pupa waiting to hatch. Mites of the Gamasida and tiny annelids could also be observed there. The video consists of macro fotage and microscopic footage, all recorded in 4K and rendered in an uncompressed quality.

 

Berlin, December 2017/November 2018, copyrights Stefan F. Wirth

Neozoen sind in Berlin längst allgegenwärtig, doch Grund zur Panik besteht nicht

Wer mit offenen und kundigen Augen über Berliner Sommerwiesen wandert, wird dort auch Tiere und Pflanzen finden, die hier nicht ursprünglich beheimatet waren. Sogenannte Neozoen oder Neophyten entstammen anderen Teilen Europas oder der Welt und sind irgendwie durch Menscheneinwirkung verschleppt und dann freigesetzt worden. Dies geschieht zumeist durch menschliche Handelsaktivitäten. Dabei geht der Transport einer Art aus ihrem ursprünglichen in einen fremden Lebensraum in der Regel ungewollt vonstatten. Der Tier- und Pflanzenhandel verbreitet Arten jedoch mitunter auch vorsätzlich. Eine dauerhafte Etablierung der Arten ist meist jedoch unbeabsichtigt.

Die Auswirkungen der Verschleppung können höchst unterschiedlich ausfallen. So sind einige Organismen bekannt, die sich aus tropischen Regionen über den internationalen Pflanzenhandel weltweit verbreitet haben, die jedoch aufgrund ihrer ökologischen Vorlieben nur in Gewächshäusern überleben können.

Derlei Neozoen können daher die heimische Fauna der Region, in die sie verschleppt wurden, und somit das dortige Ökosystem nicht schädigen. Sie sind in gewisser Hinsicht und unter bestimmten Umständen sogar nützlich. So beherbergt beispielsweise das „Tropical Islands“ südlich von Berlin, ein riesiges Freizeitbad mit tropischer Vegetation unter der Glaskuppel einer ehemaligen Produktionsstätte für Luftschiffe, neben verschiedenen Organismen, die man typischer Weise in Gewächshäusern antrifft (tropische Schaben, Hundertfüßer, Tausendfüßer, kleine Springspinnen) auch sogenannte Zwerggeißelskorpione (Schizomida, Spinnentiere). Diese findet man keineswegs in jedem beliebigen Gewächshaus, wohl weil sie (unbekannte) besondere Ansprüche an ihre Umgebung stellen. Ich durfte im Tropical Islands mehrfach zusammen mit meinen damaligen Studenten der FU Milben und Schizomiden aufsammeln. So war es mir möglich, meinen Bildungsauftrag in besonderer Weise zu erfüllen und meinen Studenten mit den gefundenen Zwerggeißelskorpionen hinsichtlich Gestalt und Biologie äußerst ungewöhnliche Spinnentiere vorzuführen. Dabei muss man berücksichtigen, dass so mancher ausgewachsene Spinnentierforscher diese Tiere noch nie lebend zu Gesicht bekam. Ich nutzte die besondere Gelegenheit auch gleich, um hochauflösende Videos zu Verhaltensaspekten dieser bizarren und grazilen Tiere zu erstellen. Diese haben mehrfach die Aufmerksamkeit von Schizomiden-Forschern erregt, die ihrer Arbeit zwar in den ursprünglichen Verbreitungsgebieten der Tiere nachgehen, jedoch offenbar außerstande sind, qualitativ vergleichbares Videomaterial zu erstellen. Wie auch zoologische Gärten können Neozoen in Gewächshäusern also die Bildung bereichern.

 

alle Urheberrechte des Videos liegen bei Stefan F. Wirth, Berlin 2018

 

Im Übrigen muss betont werden, dass alle hier im Zusammenhang mit Gewächshäusern allgemein und dem „Tropical Island“ im Speziellen genannten Organismen für Menschen ungefährlich und meist mikroskopisch klein sind. Sie stellen in künstlichen „Regenwäldern“ einen für das Gedeihen der Flora notwendigen Bestandteil deren Ökosystems dar.

Generell sind aber auch Fälle von Pflanzen oder Tieren bekannt, die den Weg aus Gewächshäusern oder Aquarien in den angrenzenden, ihnen unbekannten Lebensraum fanden und dort (zumindest zeitweise) bestehen konnten. So wurde beispielsweise der Asiatische Marienkäfer (Harmonia axyridis), der ursprünglich im östlichen Asien beheimatet ist, bereits zu Beginn des 20. Jahrhunderts in Gewächshauskulturen zur Schädlingsbekämpfung eingesetzt, und zwar zunächst in den USA, wo er entkam und sich auch im Freien etablieren konnte. Inzwischen ist der Käfer auch im Freiland Südamerikas, Afrikas und Europas ansässig geworden und schadet unter anderem einheimischen Marienkäferarten. Denn als Konkurrent ist er nahezu unbesiegbar. So ist sein Appetit nach Blattläusen kaum zu stoppen, doch auch gegen Infektionen erweist er sich deutlich resistenter als beispielsweise deutsche Marienkäferarten. Erschwerend kommt hinzu, dass er die Sporen eines parasitischen Einzellers, sogenannte Mikrosporidien, an heimische Arten weitergeben kann, die im Gegensatz zu H. axyridis keine oder eine herabgesetzte Immunität gegen diesen Parasiten besitzen.

Der Käfer ist häufig auf Berliner Wiesen im Sommer anzutreffen, wo er mit oder ohne deutlich sichtbaren Punkten auf den Flügeldecken auftreten kann. Wie er dorthin kommt? Zunächst einmal haben Forscher mithilfe genetischer Marker herausgefunden, dass die meisten Käferpopulationen in Europa, Südamerika oder Afrika auf Tiere aus den USA zurückzuführen sind. Sie sind daher international vorwiegend durch den Menschen verbreitet worden. Darüber hinaus kann die Art, die ja effizient in der heimischen Natur bestehen kann, natürlich auch aus eigener Kraft neue, nah gelegene Lebensräume erschließen.

Gemäß den Aussagen des Leiters der NABU-FG Entomologie in Berlin, Thomas Ziska, wurde der Asiatische Marienkäfer 2004 erstmals in Berlin nachgewiesen. Zwischen 2005 und 2008 hat die genannte Fachgruppe den Käfer zudem regelmäßig im Bereich des Tegeler Fließtals angetroffen.

Das nämlich war genau der Anlass meiner Kontaktaufnahme mit dem NABU. Im Rahmen eines eigenen kleinen Forschungs- und Kunstprojektes habe ich im Sommer 2018 Beobachtungen zur Insektenvielfalt (vorwiegend Blütenbesucher) auf Berliner Sommerwiesen gemacht. Schwerpunktmäßig ging es mir dabei auch um Fotografie. So besuchte ich regelmäßig das Tempelhofer Feld, das Teufelsberg-Gebiet sowie das Areal des Nord-Berliner Köppchensees, das einen Teil des Tegeler Fließtals darstellt. Der Köppchensee sowie seine angrenzenden Ökosysteme werden naturkundlich durch die NABU Berlin betreut, die in vorbildlicher Weise dafür Sorge trägt, dass der Besucher dieses Natur-Refugiums über zoologische Besonderheiten ausführlich in Form von Informationsplakaten informiert wird.

Von besonderem Interesse für alle Naturliebhaber und Naturkenner ist das Gebiet aufgrund eines Mosaiks aus verschiedenen Feuchtgebiet-Typen sowie sandiger Areale mit entsprechender Sandlückenfauna, ergänzt durch Trockenwiesen, die zum Teil auf einer Anhöhe gelegen und mit alten Obstbaumpflanzungen versehen sind. Diese gedeihen aufgrund einer exponierten Sonnenlage ausgezeichnet und liefern vor allem verschiedene Pflaumen- und Apfelsorten.

 

Das gesamte Köppchensee-Gebiet zeichnet sich durch eine artenreiche Flora und Fauna aus. Zudem ist es ein Refugium für zahlreiche Vogelarten. So lassen sich beispielsweise auf den Obst-Trockenwiesen im frühen Sommer Neuntöter bei der Jagd und der Aufzucht der Jungtiere beobachten.

Im Vergleich zu den Arealen Teufelsberg und Tempelhofer Feld waren mir nicht nur asiatische Marienkäfer am Köppchensee besonders häufig aufgefallen, freilich ohne eine Statistik angefertigt zu haben. Auch ein weiteres Neozoon aus dem östlichen Asien scheint sich um den Köppchensee auffällig etabliert zu haben, nämlich der Buchsbaumzünsler (Cydalima perspectalis).

 

Der auffällige Schmetterling war mir mehrfach ausschließlich am Köppchensee, und zwar auf der Trockenwiese in Höhe der Aussichtsplattform vor die Kameralinse geflattert, nicht am Teufelsberg und nicht auf dem Tempelhofer Feld. Dies mag allerdings Zufall sein, da der Buchsbaumzünsler gemäß der Senatsverwaltung für Umwelt, Verkehr und Klimaschutz bereits seit 2017 „flächig im Stadtgebiet Berlin vertreten“ ist.

Hinzu kommt, dass erwachsene Falter zwar zur Nahrungsaufnahme verschiedene Blütenpflanzen ansteuern, die Larven jedoch strikt auf die Anwesenheit von Buchsbäumen (Buxus) angewiesen sind, die es laut Thomas Ziska von der NABU-FG Entomologie am Köppchensee direkt gar nicht gibt. So ist davon auszugehen, dass die von mir beobachteten Falter in angrenzenden privaten Gärten geschlüpft sind.

Vermutlich durch den Handel mit Zier- und Nutzbäumen konnte sich der Buchsbaumzünsler aus seiner eigentlichen Heimat in Ostasien nach Europa verbreiten, wo er sich inzwischen auch in Österreich, der Schweiz, den Niederlanden, Großbritannien und Frankreich etabliert hat. Auch aus Belgien und einigen osteuropäischen Ländern gibt es entsprechende Meldungen.

Die Schadwirkung des Schmetterlings beschränkt sich auf Buchsbaumbestände in Parkanlagen und privaten Gärten sowie wilden Exemplaren in naturbelassenen Gebieten. Die können bei Befall jedoch vollständig kahl gefressen werden. Inwiefern heimische Insekten, die an das Leben an Buchsbäumen angepasst sind, durch das Neozoon in Mitleidenschaft gezogen werden, habe ich nicht recherchiert.

Direkt am Holzzaun der Aussichtsplattform, die von einer Anhöhe aus einen beeindruckenden Überblick über den Köppchensee verschafft, habe ich ein weiteres Tier entdeckt, das offenbar ein Neozoon darstellt, nämlich die marmorierte Baumwanze Halyomorpha halys. Allerdings bin ich bis heute unsicher, ob ich als Nicht-Wanzenkundler die eigentlich auffällige Baumwanze anhand des einzigen Fotos, das mir zur Verfügung stand, korrekt bestimmt habe. Thomas Ziska bestätigt dies jedoch in seiner Email mit den Worten: „Der Nachweis von H. halys am Köppchensee ist neu.“

Auch die marmorierte Baumwanze ist ursprünglich im Osten Asiens beheimatet und fand über Transportkisten erst Anfang dieses Jahrtausends ihren Weg aus China nach Nordamerika, wo sie sich etablieren und rasant ausbreiten konnte. Nachweise aus Europa liegen erst seit 2007 vor. Es ist mir nicht bekannt, ob die Verschleppung direkt aus China erfolgte oder über den Umweg durch die USA. Seit 2016 jedenfalls verbreitet sich die Art zunehmend in Deutschland, allerdings eher in südlichen Bundesländern. Gemäß Informationen durch Th. Ziska trat die Wanze auch 2016 erstmals in Berlin auf.

H. halys tritt aufgrund ihrer biologischen Neigungen vorwiegend als Pflanzenschädling in Erscheinung. Wie üblich für Baumwanzen saugt die Art an Pflanzensäften. Hierbei verursacht sie wirtschaftlichen Schaden, indem sie verschiedene Nutzhölzer attackiert. So werden beispielsweise die Fruchtanlagen von Apfel, Birne, Pfirsisch oder Haselnuss angestochen, was die Entwicklung der Früchte stört, so dass Missbildungen die Folge sein können.

Ein weiteres Neozoon, das mir bei meinen Foto-Exkursionen häufiger aufgefallen ist, stellt die Büffelzikade Stictocephala bisonia dar. Allerdings fand ich diese gerade nicht am Köppchensee, dafür aber auf dem Tempelhofer Feld und im Schillerpark im Berliner Bezirk Wedding.

Die faszinierende kleine Buckelzikade stammt ursprünglich aus Nordamerika und scheint der Literatur zufolge über Triebe zur Veredelung von Obstbäumen nach Europa eingeführt worden zu sein, wo eine flächige Ausbreitung ab spätestens 1912 erfolgte. Waren zunächst der Mittelmeerraum, Mittelasien und Nordafrika betroffen, begann die Art seit den 1960er Jahren nordwärts gen Mitteleuropa zu wandern. Hier breitet sich die Zikade seit etwa 2000 in Deutschland aus, Nachweise aus Brandenburg liegen seit 2004 vor.

Die Pflanzensauger scheinen der Literatur zufolge hinsichtlich ihrer Wirte nicht sehr wählerisch zu sein. So werden neben Rosengewächsen, wo ich sie zumeist antraf, auch Obstbäume oder Pappeln befallen. Die wirtschaftlich relevanten Schäden entstehen weniger durch die Saugaktivitäten der erwachsenen Insekten als vielmehr durch die Eiablage. Denn die erfolgt in dichten Abständen zueinander. Da Pflanzenteile, die über den Eiern liegen, zumeist absterben, kann hierdurch ein beträchtliches Schadbild an den Wirtspflanzen entstehen. Auch in diesem Zusammenhang ist mir nicht bekannt, inwieweit das Neozoon eine ernsthafte Konkurrenz für ursprünglich einheimische Zikadenarten darstellt.

Es ist übrigens kalendarisch definiert worden, ab wann eine Pflanze oder ein Tier als Neozoon oder Neophyt zu bezeichnen ist. Als festgelegtes Datum gilt die Entdeckung Amerikas im Jahre 1492. Arten, die davor mit menschlicher Hilfe verbreitet wurden, werden als Archäobiota, also Archäozoen oder Archäophyten bezeichnet. Danach wird die Vorsilbe Neo- zur Anwendung gebracht.

Ein Beispiel für ein Archäophyt ist die Wilde Karde Dipsacus fullonum, die man beispielsweise in den Trockenwiesen am Berliner Köppchensee bestaunen kann. Das dekorativ erscheinende Geißblattgewächs stammt ursprünglich aus dem Mittelmeerraum. Die Pflanze gilt als eher nützlich und findet zum Beispiel in der Volksheilkunde Verwendung.

 

Andere Neozoen, die in Berlin häufig anzutreffen sind, sollen hier nicht weiter erläutert werden. Hierzu gehören beispielsweise der Waschbär Procyon lotor oder der Louisiana-Flußkrebs Procambarus clarkii. Auch die Süßwasserqualle Craspedacusta sowerbii und die Chinesische Wollhandkrabbe Eriocheir sinensis sind neozoische Einwanderer in Deutschland und tauchen immer wieder in Berlin auf.

Wasserlebende Neozoen, wie beispielsweise die Wollhandkrabbe, werden häufig durch den Frachtschiffverkehr über große Distanzen transportiert. Ballastwasser kann eine Quelle der Verschleppung sein. Jedoch ist der Effekt solcher unplanmäßigen Tiertransporte keineswegs immer ein Desaster. Denn manche Organismen überleben nur kurzzeitig in der hierzulande warmen Jahreszeit und können daher auch keine eigenständigen Populationen entwickeln.

 

Sind Neobiota grundsätzliche durch Menschen verursachte Naturkatastrophen?

 

Der Mensch als Vektor für die Verschleppung von Organismen, so viel muss festgehalten werden, kann seiner Umwelt Schaden zufügen, so wie viele andere seiner Aktivitäten auch.

Und doch ist ein Artensterben, beispielsweise hervorgerufen durch neu etablierte Tiere, die verwandte einheimische Arten verdrängen, ein Prozess, den es nicht erst seit der Evolution des Homo sapiens gibt.

Dass Arten aussterben und neue Arten entstehen ist das Prinzip der Evolution auf unserem Planeten. Neben tektonischen spielen hierbei auch klimatische Veränderungen eine große Rolle. Klimaerwärmungen beispielsweise ermöglichen wärmeliebenden Arten grundsätzlich, zuvor lebensfeindliche Gebiete besiedeln zu können. Dabei gibt es neben der Verschleppung durch den Menschen auch natürliche Wege der Verbreitung über große Distanzen, beispielsweise durch Zugvögel oder Treibgut auf Ozeanen.

Dennoch formt der Mensch seine Natur in einer Weise, die es vor seinem Erscheinen auf diesem Planeten nicht gegeben hat. Daher kann man sich nicht zurücklegen und sagen: Arten kommen und andere vergehen, das ist nun einmal der Lauf der Natur. Ein effizienter Naturschutz, der auch die Bekämpfung mancher Neobiota beinhaltet, ist unerlässlich.

Berlin, 12.11.2018

All Copyrights Stefan F. Wirth

 

 

 

Meine Antworten zum Fragebogen der katholischen Zeitschrift „Christ in der Gegenwart“

Die ökumenisch ausgerichtete und überregionale katholische Zeitschrift „Christ in der Gegenwart“ hat einen Fragebogen via Email versandt. Er landete in meinem Spam-Ordner und war auch nicht explizit an meine Person gerichtet. Und dennoch entschied ich mich, die Fragen zu beantworten.

Diese Antworten sollen hier präsentiert werden:

1. Irgendetwas Höheres muss es doch geben.

Nein, ich bin anderer Meinung.
Nicht auszuschließen, aber auch nicht belegt. Die Evolution erklärt alle Vorkommnisse des irdischen Lebens lückenlos.

2. Gott erfährt man eher durch Fühlen, weniger durch Denken.

Nein, ich bin anderer Meinung.
Das würde den Religionsgemeinschaften so passen. Ihre Schäflein bleiben nur dann folgsam und zahlungswillig, wenn man sie dumm hält.

3. Zweifeln gehört zum Glauben.

Ja, das sehe ich so.
Gängige Glaubensdogmen muss man stets bezweifeln!

4. Wenn Gott fehlt, ist alles erlaubt.

Nein, ich bin anderer Meinung.
Dort, wo ein menschengemachter dogmatischer Gott das Sagen hat, ist nicht nur jede Unmenschlichkeit erlaubt, sondern sie ist sogar integraler Bestandteil jeder Glaubensbewegung. Wo ein Menschengott herrscht, herrschen stets auch Diskriminierung, Verleumdung, Hass und Morde.

5. Die Ergebnisse der Natur- und Humanwissenschaften …

… können über Gott keine Aussage treffen.
Seriöse Wissenschaften agieren faktenbasiert. Bei fehlenden Fakten wird keine Aussage getroffen. Es gibt keine wissenschaftlich haltbaren Belege für einen christlichen, einen muslimischen oder buddhistischen Gott.

6. Der zunehmende Wohlstand hat Gott überflüssig gemacht.

Nein, ich bin anderer Meinung.
Das zunehmende Bildungsniveau weltweit und die damit einhergehende zunehmende Individualisierung der Menschen, die Selbstbewusstsein durch Aufklärung erfahren, machen die genannten von Menschen erfundenen Götter überflüssig.

7. Die Kirche sollte sich mehr mit der Frage nach Gott beschäftigen.

Nein, ich bin anderer Meinung.
Die Kirchen dieser Welt sollten sich mehr mit Ethik, Bildung, Toleranz und Menschlichkeit befassen.

8. »Ich bin der Weg und die Wahrheit und das Leben; niemand kommt zum Vater außer durch mich.« (Joh 14,6). Jesus ist der einzige Weg zu Gott.

Nein, ich bin anderer Meinung.
Der historische Jesus aus Nazareth war ein Lehrer für Moral und Toleranz. Anstatt ihn mit der Andichtung albernen Hokuspokus zu verhöhnen, sollte man sich mit seinen Lehren befassen, den Lehren über Moral und Toleranz.

9. Nur mit Gott hat das Leben einen Sinn.

Nein, ich bin anderer Meinung.
Biologisch besteht der Sinn in der Fortpflanzung. Philosophisch sind zahlreiche Zielwerte entwickelbar. Kein dogmatisches Gottesbild wird benötigt.

 

By Stefan F. Wirth

Berlin, Oktober 2018

Drohnen sammeln Proben aus dem Luftausstoß von Walen

Drohnen werden in der Zukunft weit größere Einsatzbereiche finden, als nur Spielzeug oder fliegende Film- und Fotokameras zu sein. Schon heute werden sie im Kontext der Personenrettung und der Landschaftsvermessung eingesetzt. Inzwischen haben Forscher der Ocean Alliance-Gruppe ein weiteres Tätigkeitsfeld eingeführt.

Um DNA-Proben, Informationen über Viren- und Bakterienlast sowie die hormonelle Situation eines Wals zu sammeln, ohne sich diesem persönlich nähern zu müssen, wird eine entsprechend aufgerüstete DJI Inspire-Drohne in den Luftausstoß der Tiere geflogen, kurz nachdem sie aus der Tiefe an der Wasseroberfläche angelangt sind.

 

Ocean Alliance veröffentlicht Video über den Drohnen-Einsatz an Walen

Die Organisation Oceans Alliance mit Sitz in Gloucester, Massachusetts (USA), ist 1971 durch den Biologen Roger Payne gegründet worden. Sie hat in Zusammenarbeit mit dem Olin College of Engineering ein komplexes technisches System erschaffen, das neben der genannten Drohne auch Formen der künstlichen Intelligenz zur Erforschung von Walen einsetzt. Das Ergebnis wird als Parley-SnotBot-Projekt bezeichnet.

Was es damit auf sich hat und wie weit seine Möglichkeiten bis heute gediehen sind, zeigt ein aktuelles Video von Mitte August 2018, das Ocean Alliance an seine Partner verschickte und auf dem YouTube – Kanal von „DroneDJ“ veröffentlicht wurde.

Da Ocean Alliance das Ziel verfolgt, zum Schutz und dem Erhalt der Wale beizutragen, soll Mithilfe des SnotBot-Projektes gewährleistet werden, biologisch verwertbare Daten von Wal – Individuen zu erhalten, ohne die Meeressäuger zu verletzen oder in Stress zu versetzen. Und nicht zuletzt geht es darum, die Forscher selbst zu schützen, da jede Annäherung an einen Wal lebensgefährlich sein kann.

 

Video publiziert bei DroneDJ

 

Das SnotBot-System beprobt Wale beim Ausatmen und liefert zusätzliche Informationen in Echtzeit

So entwickelten die Forscher die Idee, den sogenannten Blas (Engl. Snod) der Wale aus der Distanz mittels Drohne zu beproben, ohne den Tieren dabei zu nahe zu kommen. Der Vorteil, die ausgeblasene Luft eines Wals zu verwenden, liegt darin, dass dort neben der verbrauchten Atemluft auch Sekrete aus Lunge und Nasengang enthalten sind. Sie erlauben nicht nur genetische Analysen, sondern ermöglichen zudem hinsichtlich verschiedener Parameter Rückschlüsse auf den gesamten Gesundheitszustand des betreffenden Tieres.

Doch das technisch aufwändige SnotBot-System kann noch mehr als das. Es ist nämlich unter anderem dazu in der Lage, das Auftauchen eines Wals vorauszusehen und diesen anhand der Form seiner Schwanzflosse in Echtzeit individuell zu identifizieren.

 

Umgebauter DJI Inspire: Beschaffenheit der Drohne und künstliche Intelligenz von Intel

Der verwendete Quadrokopter ist ein modifizierter DJI Inspire. Die Profi-Drohne eignet sich für diesen Einsatz deshalb gut, weil sie trotz professioneller Hightech-Ausstattung einen Aspekt aus dem Amateursegment übernommen hat. Es handelt sich nämlich um eine sogenannte Ready-to-Fly-Drohne, die nicht vor jedem Flug neu aufgebaut werden muss. Der Kopter kann somit nicht nur schnell gestartet werden, sondern ist aufgrund seiner Bauart auch besonders wendig und robust. Diese Schnelligkeit wird durch Propeller in einem Z-Blade-Design, das besonders stromlinienförmig ist, sogar noch erhöht. Dass diese aus Kohlefasern bestehen, verleiht ihnen zudem eine höhere Stabilität.

Um den Luftausstoß des Wals beproben zu können, wird das Fluggerät mit mehreren Petri-Schalen als Sammelbehältnisse ausgestattet. Ausserdem kommen zeitgleich die künstlich intelligenten Systeme der Intel Movidius- und Xenon-Technologien zum Einsatz. Sie dienen dazu, anhand der Aufnahmen des Quadrokopters einzelne Walindividuen nach digitalen Bild-Karteien zu identifizieren und ausserdem einen gesamt ökologischen Kontext zu ermitteln. Eine Schwierigkeit besteht jedoch darin, all dies zu bewerkstelligen, bevor sich der Akku der Drohne leert, ein Wettlauf mit der Zeit. Denn der erste Ausstoß eines Tieres nach dem Auftauchen enthält besonders viel biologisches Material. Es ist daher wichtig, dass der Kopter zielstrebig und ohne Energieverlust dieses kurze Zeitfenster anfliegt.

 

Langfristiger Artenschutz mittels Drohnen-Technologie

Ocean Alliance hat somit in Zusammenwirkung mit seinen Kooperationspartnern ein intelligentes System entwickelt, in dessen Mittelpunkt eine Drohne steht. Diese Innovationen  erlauben es, die Lebenssituation der Walpopulationen und ihres Ökosystems zu analysieren, eine wichtige Voraussetzung, um tierschonenden und langfristigen Artenschutz zu betreiben

 

Copyrights für diesen Text: Stefan F. Wirth, September 2018