biologe

Blog and online journal with editorial content about science, art and nature.

Kategorie: Forschung

Teaching: Ich als Naturalist – Me as a naturalist

Bumble bee Bombus sp. in Berlin, copyrights Stefan F. Wirth 2021/2022
Honey bee Apis mellifera in Berlin, copyrights Stefan F. Wirth 2021/2022
Deutonymphs of the microscopically tiny mite Schwiebea cf. eurynymphae (Acaridae, Astigmata) formally attached to beetle Phosphuga atrata under the bark of felled tree trunk of Tilia platyphyllos in urban park Rehberge in Berlin, copyrights Stefan F. Wirth, 2021/2022
Larvae of beetle Oryctes nasicornis from Italy with associated gamasid mites under studio light conditions, copyrights Stefan F. Wirth, Berlin 2016/2022
Land crab Metasesarma obesum under studio conditions, copyrights Stefan F. Wirth, Berlin 2017/2022

.

Ich biete Unterricht, Förderkurse, Vorträge und Fortbildungskurse zu den Themen Naturkunde, Naturschutz, Artenvielfalt, Ökologie, Klimaschutz und Evolution an sowie Unterricht oder Vorträge zur Naturfotografie oder der Naturfilmerei. All dies entweder auf Honarbasis oder via Anstellung. Bitte entnehmen Sie weitere Informationen meinem Menüpunkt zum Thema Unterricht und Lehre. Selbstverständlich verfüge ich über Qualifikationsnachweise zu meinen diversen bisherigen Lehrtätigkeiten sowie meine fachliche Kompetenz. Bitte beachten Sie hierzu auch meinen Menüpunkt Curriculum Vitae.

Doch was sind eigentlich meine Themengebiete? Im Folgenden finden Sie interessante Fragestellungen aus meinen Kompetenzbereichen.

Was ist ein Ökosystem? Welche Ökosysteme sind gut untersucht, welche eher nicht? Wie gut kennt man die Artenvielfalt von Mikro-Lebensstätten in Deutschland, und was ist über deren biologische (ökologische) Zusammenhänge bekannt? Was ist denn eigentlich eine Art, was sind denn dann Zwillingsarten, und was versteht man gar unter einem Artenkomplex (kryptische Artengruppe)? Ist das Aussterben von Arten ein normaler Bestandteil der Evolution oder ist das Aussterben einer Art immer zwingend ein alamierender Hinweis auf eine (evtl. menschengemachte) Naturkatastrophe? Wieviele Arten aus allen Organismengruppen weltweit kennen wir, und wieviele in etwa kennen wir noch nicht? Warum kennen wir viele Arten, sogar in Deutschland, noch immer nicht? Wie erkennt man neue Arten, und wie ist eine sogenannte Artbeschreibung aufgebaut? Ist der Mensch eine Tierart, und wo im Stammbaum der Tiere ist er dann anzusiedeln?

Warum sind ein Wald, ein Teich oder eine Wiese Orte für interessante Entdeckungen, und zwar insbesondere auch für Kinder? Was lebt denn da, und wie ist es an seinen Lebensraum angepasst? Was haben unterschiedliche Arten in solchen Lebensräumen eigentlich miteinander zu tun? Und wie beobachtet man Tierverhalten am besten? Wie dokumentiert man es aussagekräftig, um sein Wissen später mit Freunden oder über soziale Netzwerke teilen zu können?

Wie kommt es zum sogenannten Global Warming, der globalen Klimaerwärmung? Wie können wir sie nachweisen? Warum ist sie zu einem beträchtlichen Teil menschengemacht? Und welche Auswirkungen haben Klimaerwärmung und die Ausbeutung natürlicher Ressourcen (Energiespeicher, Rohstoffe, wie zum Beispiel Tropenholz) für die Zukunft der Menschheit und die Artenvielfalt auf unserer Erde. Welche Auswege erhofft man sich? Woran wird derzeit gearbeitet?

Was benötigt man zur Naturfotografie, was, wenn man zusätzlich oder alternativ auch noch auf gutem Niveau filmen möchte? Was ist grundsätzlich wichtiger: Das Equipment oder das Bild, das zuvor im Kopf des Fotografen oder Filmers entsteht? Muss taugliches Equipment immer ultra-teuer sein? Welche Software eignet sich am besten zum Editieren? Was genügt dabei den Ansprüchen von Anfängern, was benötigen Fortgeschrittene und Profis? Wie filme oder fotografiere ich draußen in der Natur? Wie hole ich stattdessen die Natur in mein Fotostudio und inszeniere sie dort so, dass es aussieht, als habe man im Freien gearbeitet?

Dies sind alles mögliche Themen, die in meinem Unterricht, meinen Kursen oder Vorträgen vertieft werden können. Beliebige weitere Fragestellungen aus den Bereichen Naturkunde, Biologie, Ökologie und Evolution arbeite ich gerne für Sie aus.

I offer lessons, remedial courses, lectures and advanced training courses on the subjects of natural history, nature conservation, biodiversity, ecology, climate protection and evolution, as well as lessons or lectures on nature photography or nature filming. All this either on a fee basis or via employment. Please see my menu item on the subject of teaching for further information. Of course, I have proofs of qualifications for my various previous teaching activities as well as my professional competence. Please also note my menu item Curriculum Vitae. 

But what are my topics? In the following you will find interesting questions from my areas of competence:

What is an ecosystem? Which ecosystems have been well studied and which not? How well do you know the biodiversity of micro habitats in Germany and what is known about their biological (ecological) relationships? What is actually a species, what are sibling species, and what is meant by a species complex (cryptic species group)? Is the extinction of species a normal part of evolution or is the extinction of a species always an alarming indicator of a (possibly human-made) natural disaster? How many species from all groups of organisms worldwide do we know, and roughly how many do we not yet know? Why do we still not know many species, even in Germany? How do we recognize new species and how is a so-called species description structured? Are humans an animal species, and if so, where do they belong in the animal tree?

Why are a forest, a pond or a meadow places for interesting discoveries, especially for children? What lives there and how is it adapted to its habitat? What do different species actually have to do with each other in such habitats? And what is the best way to observe animal behavior? How can you document it meaningfully so that you can later share your knowledge with friends or via social networks? 

How does the global warming come about? How can we prove its existence? Why is it largely human-made? And what are the effects of global warming and the exploitation of natural resources (energy stores, raw materials such as tropical wood) on the future of humanity and biodiversity on our planet? What exits to avoid emergency situations are we hoping for? What are scientists currently working on to ensure a healthy human future? 

What do we need for nature photography, what if we also want to film at a good level in addition or as an alternative? What is fundamentally more important: the equipment or the image that is created in the head of the photographer or filmmaker? Does suitable equipment always have to be ultra-expensive? Which software is best for editing? What meets the requirements of beginners, what do advanced and professionals need? How do we film or take photos outdoors in nature? Instead, how do we bring nature into our photo studio and stage it there in such a way that it looks as if we were working outdoors? 

These are all possible topics that can be deepened in my teaching, courses or lectures. I would be happy to work out any other questions from the fields of natural history, biology, ecology and evolution for you. 



all copyrights Stefan F. Wirth Berlin 2022

Mate guarding of a juvenile female in mites of the Histiostomatidae (Astigmata, Acariformes)

Male of Histiostoma sp. guards a female tritonymph, copyrights Stefan F. Wirth 2005-2022

.

A strategy to avoid male competition for females

.

Some mites of the Histiostomatidae practice so-called mate guarding of subadult females in order to have an advantage in the intraspecific competition between males for adult females. My SEM image shows a male on top of a female, which is still inside its tritonymphal cuticle. Inside the tritonymphal cuticle, the adult female is already developed and shortly before hatching. Before hatching, the legs of the new instar are folded under the body side. The new second leg on the right side is visible in the SEM, because the weak cuticle of the old leg broke off. This strategy to avoid sexual competition is quite common with Histiostomatidae. Due to insufficient mite material and not longer available clear ecological data, I determine the long haired adults of my old SEM series with caution as Histiostoma sp., it seemingly was found around sap flux on a tree trunk in Berlin. The species is not identical with Seliea pulchrum (= Histiostoma pulchrum), typically known from sap flux. The distance between the male legs 1 and 2 in the photo is about 0.1 mm. These SEM objects were seemingly chemically dried for the scanning electron microscopic procedure. The photos were taken around 2005 with an older SEM at FU Berlin. © Stefan F. Wirth Berlin 2022

Mites, Biodiversity, evolution, species extinction, new species

More Specialists are needed to study our biodiversity: recognizing and describing new species, redescribing known ones, mapping their distribution and understanding their ecological role in an ecosystem.Thus we have to support our children and students to become fascinated by nature.

Also interested laypeople, hobby researchers and nature lovers can contribute to species preservation and nature conservation (and thus climate protection) and encourage their children or relatives to study biology or a similar subject.

Es werden mehr Spezialisten benötigt, um unsere Biodiversität zu studieren: neue Arten zu erkennen und zu beschreiben, schon bekannte Arten neu zu beschreiben, ihre Verbreitung zu kartieren und ihre ökologische Rolle in einem Ökosystem zu verstehen. Daher müssen wir unsere Kinder und Schüler dabei unterstützen, sich für die Natur zu begeistern.

Auch interessierte Laien, Hobbyforscher und Naturfreunde können einen Beitrag zum Arten- und Naturschutz (und damit zum Klimaschutz) leisten und ihre Kinder oder Angehörigen für ein Studium der Biologie oder eines ähnlichen Faches animieren.

© Stefan F. Wirth, Berlin 2022

I provide advices and information about the topics mites (in general, in your house or your company and in a hygiennic context), biodiversity, correlation biodiversity research and climate change, speciation processes, describing new species, species extinction, taxonomy for private people, educational institutions, e.g. schools or university students. Please see my menue item „Angebot biologische Beratung…“

Ich biete Beratung und Informationen zu den Themen Milben (allgemein, in Ihrem Haus oder Ihrem Unternehmen oder im hygienischen Kontext), Biodiversität, Korrelation Biodiversitätsforschung und Klimawandel, Artbildungsprozesse, Beschreibung neuer Arten, Artensterben, Taxonomie, für Privatpersonen, Bildungseinrichtungen, z.B. Schulen, oder Studenten. Bitte beachten Sie meinen Menüpunkt "Angebot biologische Beratung..."

Biodiversity research in the US, is the so called American Way always a good basis?

A collegue from the field of entomology recently wrote me his impressions about the situation of scientific fundings in the western world, as he travels around and stays with each of his feet in another country. He said that everybody knows about the importance of the biodiversity on earth and that consequently everybody agrees that research on the biodiversity deserves to be funded. But he continued that this does not mean that the same people would agree that biodiversity research requires experts and that experts would even need to be paid. Thus many of his former students in the US or Germany need to survive with temporary jobs other than their expertises would require.

But also an international unbalance of financial resources, available for fundamental research in entomology or for example acarology (my discipline) can lead to experts being sorted out, although they would be urgently needed. The focus, based on the considered eligibility of research, changed withing the last 25 years. As before Germany was a hotspot for high-quality research in the fields of evolutionary biology, systematics and biodiversity research, that focus of interest is now located in the USA. They invest more money into these sciences than all European countries together.

This can additionally have consequences for the quality of such kinds of research. It is no secret that the general educational level in the US is at least in some areas comparably low, many people don’t speak foreign languages, they often don’t travel abroad, and they live in midst of a mentality, which says „America first“. Biodiversity research would in the old German world of science regularly be connected with many „but consider that…“ conditions. The American way, in some cases, might want to have it easier. They might say: what’s the problem? What do they want to have? Yes, right, they want the numbers of all discovered species. They ask for numbers, thus we do our best to give them numbers, as fast as possible.

Some privileged US-researchers might even misuse their financial power to decide, who in other countries is and who is not. But I say in a rhetoric „you“: Use your fundings to involve as many suffering experts from abroad as possible, instead of center too much work and responsibility on yourself, you won’t have enough time due to too many species, which still need to be discovered and described.  Don’t work too fast and don’t risk to become too superficial. Each species deserves time. Share the work with others and make science benefit from the different kinds of backgrounds in different areas of the world.

 

Amsterdam_027

A mite of the Histiostomatidae, found in Amsterdam in its original substrate as example for the topic „Acarology“

 

All copyrights (also of SEM photo): Dr. rer. nat. Stefan F. Wirth, Berlin July 2020

Systematics and biology of termites and about their phoretic associations

They live in eusocial communities, but are not closer related to ants or bees. Termites belong to the cockroaches.

 

Queen, king and castes

 

Usually one queen and one king are reproductive and act as heads of the nest. The different work fields of a nest are executed by infertile specimens, which can show very different and specialized body shapes. The diversity of different castes is in phylogenetically „primitive“ taxa lower than in „higher developed“ termite groups.

 

As example specimens of a deadwood species from Italy

 

This species was found in deadwood of a small forest in Portici (Gulf of Naples, Italy) and might represent the taxon Kalotermitidae. This taxon branches off rather basically  in the systematic tree of termites. Nest work can be taken over by nymphs of later alates.

 

deadwood-termites from Italy, Youtube: copyrights Stefan F. Wirth, April 2020

 

 

How is wood-eating possible?

 

Wood eating termites bear bacteria and protozoans  in their digestive tracts, which perform the digestion of cellulose.

 

Evolution, sister taxon and endosymbionts

 

Termites (Isoptera) evolved within the cockroaches (Blattodea). According to modern systematics (e.g.  Beccaloni & Eccleton, 2011) the cockroach taxon Cryptocercidae is the sister-clade of the termites. But there are controversial theories existing.

According to such reconstructions, the last common ancestor of cockroach taxon Cryptocercidae and termites possessed bacterial and protozoan endosymbionts. Molecular data proved that endosymbionts in both groups are closely related to each other. The last common ancestor of both groups showed in case of their indeed sister-group-relation a tendency towards social communities. Cryptocercidae live temporarily in bigger groups together with their offspring.

 

Subsocial lifestyle in Cryptocercidae

 

Cockroaches of the Cryptocercidae as putative sister taxon of termites live inside galleries in deadwood and feed on wood fibres. At least one parent and its nymphs live subsocially inside their galleries. Cryptocercidae adults and nymphs groom each other, and parents feed juveniles with wood fragments afer these had passed their anus openings.

 

According to recent systematic/ phylogenetic reconstructions the Kalotermitidae belong to the basically branching termite groups. Such basic groups of termites still show a low diversity of castes only.

 

Associates, commensalism and phoresy

 

Like ants or bees, termites share their nests regularly with associates of other groups of animals,

often mites and nematodes. Some of these organisms use termites as carriers for a transport over bigger distances. details of such associations between insects and mites are not well studied yet. But carrier-passenger-situations with transfer („taxi“-) purposes are called phoresy. Phoresy ist mostly considered as a neutral association between different organisms and is thus interpreted as commensalism. Commensalism is differed from strategies like parasiticm or symbiosis and requires that two organisms in association do not harm or noticeably benefit each other. The term commensalism often includes associations, in which the true context for both organism partners is simply not understood yet.

 

Not yet mites of the Gamasina (Parasitiformes) were reared in greater numbers out of my Italian termite substrate. They might represent phoretic cohabitants of those termites. Other mite species of different mite groups (Parasitiformes and Acariformes) were only found in smaller numbers and died out too quickly for collections and determinations under my culture conditions, unfortunately already before the beginning of my shootings. seemingly microclimatic conditions had become too unfavorable.

 

Copyrights Stefan F. Wirth, Berlin 2019 – 2020, all rights reserved

Complex and modified mouthparts in Histiostomatidae mites

Mites represent arachnids, which means that they share characters with much bigger organisms, such as spiders, skorpions or harvestmen. Their bodies consist of specialized bundles of segments, named tagmata.  Two major tagmata are differed from each other in arachnids: prosoma, including legs and mouthparts, and opisthosoma, including for example the digestive and the reproductive systems.

Discussed diphyletic origin of mites

Mites are according to some acarological scientists eventually not longer just mites. The former two clades of mites, Parasitiformes and Acariformes, originally considered as sister taxa, were in some modern systematics reconstructed to be diphyletic. That would mean, there was no commor ancestor, from which only those two clades derived, the two major clades would be polyphyletic with no close relationship between them, each clade is assumed being closely related to different groups of arachnids (e.g. Psedoscorpions and Opiliones).  Thus, when I talk about mites, I am talking about the clade Acariformes.

Mites of the Acariformes and body plan

In these Acariformes mites, the arachnid body construction plan was modified into three visible tagmata: gnathosoma (bearing chelicerae and pedipalps as mouthparts), proterosoma (bearing first two leg pairs) and hysterosoma (bearing last two leg pairs and opisthosoma organs).

big male 2 Saarland compost

Male (large morph) of mite Histiostoma feroniarum in dorsal view. Body division in gnathosoma, proterosoma and hysterostoma. Fixation : critical-point-dried, SEM photography, copyrights Stefan F. Wirth

Mouthparts

Let’s talk about mouthparts, as they are an important aspect of my systematic and my function.morphological studies. Originally the gnathosoma consists of a pair of scissor-shaped chelicerae to grasp the food particles and of a pair of leg-shaped pedipalps, which mostly have mechano-sensitive and chemo-sensitive functions. But because mites colonized almost all kinds of existing habitats on earth, they extensively were exposed to the mechanisms of evolution. Acariform mites show a high range of variability regarding their morphology and their life strategies.

Mouthparts of Sarcoptiformes

Within the clade Sarcoptiformes, consisting of oribatid mites, Endeostigmata (seemingly paraphyletic) and astigmatid mites, there evolved a tendency towards miniaturization. Mites of the Astigmata are usually much smaller than one mm. Correspondingly the cuticle became thinner and softer, perfect adaptations to a life inside very tiny micro habitats, but at the same time also a limitation, namely towards more or less moist habitats due to the lack of a well developed desiccation protection. They appear inside compost, rotting wood or mammal dung, being even there very specifically adapted into very defined micro climatic conditions. They live in a world of complete darkness, which is why light sensory organs are completely lost or reduced to vestigial structures.

Inside their habitats, astigmatid mites need to reproduce, to develop through different nymphal stages until adulthood and of course to feed. Astigmata are no fluid suckers, but feed on particles, such as bacteria, algae, fungi, thus many Astigmata taxa can be named microorganism feeders.

Life-strategy of mites of the (family) Histiostomatidae

Rollei Digital Camera

Extinct bark beetle fpssil in amber (collection Hoffeins) with phoretic mite deutonymphs. Fixation with hexamethyldisilazane, stereomicroscopic photography, copyrights Stefan F. Wirth

One of the largest family within the Astigmata clade is the Histiostomatidae, which I use since many years as model for my scientific studies. These mites are scientifically interesting from different points of view. Their ecology is characterized by life styles, which correspond to the life cycle of insects and other arthropods, to which most species have a close association. Most important aspect of these interactions between mites and other arthropods, commonly insects, is a dispersal strategy named „phoresy“. Mites use their „partners“ as carriers from one habitat to another. These habitats can often be the nests of the corresponding arthropods/ insects.

Habitats, in which mites of the Histiostomatidae develop successfully need to be moist and need to contain a sufficiant amount of microorganisms as food source. It is the most conspicuous feature of these mites to possess  remarkably modified mouthparts compared to the above described standard equipment of an acariform gnathosoma.

Mouthparts of the Histiostomatidae

Mite Histiostoma sp. (sapropel around ponds, female, Berlin) feeding from a substrate surface inside its original habitat. Videography in 4K, copyrights Stefan F. Wirth

The character conditions of the gnathosoma were one of the reasons, why I at the beginning of my phd thesis in 2000 decided to put my research focus on this mite family, being worldwide in major still unexplored.

The chelicera modified into a dagger-like structure being formed by the fixed part of the former scissor-like organ, named the digitus fixus. There is a variability of shapes of this digitus fius-chelicera-ending within the Histiostomatidae . It can appear „simple-dagger-like, simple formed with a hook-like ending or having cuticular dentations of specific numbers and sizes along the lower edge of the digitus fixus.

As typical for mites of the big clade Astigmata, the pedipalps are reduced in size and almost immovably ventrally and dorsally connected with each other. In Histiostomatidae, the third pedipalp article is additionally distinctly bent sidewards. Their front sides bear more or less complex arrangements of flexible membraneous structures, which can morphologically differ between taxa or even species, thus giving them a systematic relevance. I named these membrane-organs „palparmembrane“ following the nomenclature, introduced by R. Scheucher in 1957. These membranes can be devided into fringes or being lobe-sphaped and can cover the last pedipalp article dorsally and/or ventrally. My histological analysis from 2006 indicated that these membranes are shaped by the enditesof the pedipalpal coxae.

Complex mouthpart apparatus

Thus Histiostomatidae possess a bizarre mouthpart apparatus being unique within the Acariformes and representing an amount of characters, which from the phylogenetc point of view  can be reconstructed to have evolved in the stem species of that family (so called apomorphies).

Mouthpart apparatus as multifunctional organ

Mite Histiostoma sp. (male left, female right) feeding from a substrate surface inside its original habitat. Fixation with hexamethyldisilazane, SEM photography, copyrights Stefan F. Wirth

This gnathosoma is a multifunctional organ with the main function to select specific microorganism particles out of their liquid environments. When observing a histiostomatid mite with a sufficient high magnification walking along on a smooth water agar surface, on which bacteria and fungi growth was stimulated before, then occasionally trails can be seen around the walking mite, indicating that the gnathosoma was hold mostly leaned downwards towards the ground, pushing the microorganism cover along in front of the mite’s body. I interpreted this as an accumulation of food in order to gain more nutrients all at once. In my early papers, I described this as the typical feeding behavior of histiostomatid mites with the membraneous appendages acting like rubber sliders in the meantime. But as newer analyses showed is that such observations do not describe the full equipment of possible applications of the mite’s complex filter-feeding apparatus.

Membraneous structures create an underpressure to incorporate food

Mite Histiostoma ruehmi mouthpart endings with palparmembrane in ventral view. Fixation with hexamethyldisilazane, SEM photography, copyrights Stefan F. Wirth

More recent experiments with a higher videographic resolution and more suitable light conditions than 10 years ago (through-light and up light or one of them depending on the setting) showed that the palpar membrane structures , which more or less surround the entire fore-part (anterior part) of the gnathosoma can act like suckers: When the mite presses its front end of the mouthparts  to the underground, an underpressure can be formed based on these membraneous structures. This seemingly facilitates the incorporation of nutrients in that area.

Note from January 2020: In retrospect, I do not consider it sensible to superficially describe the feeding behavior using the palpar membrane at the edge. A precise videographic analysis of individual images exists and is currently being developed into a scientific paper.

Aspects of the histiostomatid feeding behavior, including using the membranous components at the anterior end of the mouthparts (pedipalps), can partly be seen in the video below.

Mite Histiostoma ruehmi and an undetermined species feeding from a smooth artificial substrate surface and performing an underpressure to incorporate food. Videography, copyrights Stefan F. Wirth

Scanning-electron-microscopic experiments

Mite Bonomoia opuntiae feeding from the surface of a substrate mount inside its original habitat. Rounded particles might represent yeast bodies. Fixation with hexamethyldisilazane, SEM photography, copyrights Stefan F. Wirth

In my early postdoc-years, still at the FU Berlin, I performed experiments in order to fix mite activities inside their original substrates by filling such a mite-substrate-setting up with 1,1,1,3,3,3-hexamethyldisilazane and warming the corresponding small experimental dish, until the chemical was vaporized. I then sputtered the conserved setting with gold and studied the details on it via scanning-electron-microscopy. Occasionally, mites were shrinkled or deformed after this procedure, but sometimes they stayed in shape and did seemingly still remain in their last activity positions. I several times could take SEM photos, showing that (well visible only in adult mites due to their size) mite specimens can insert their (distal) chelicerae-endings into bigger heaps of substrate (obviously full of nutrients) and use the entire laterally bent pedipalpal articles, including the connected palparmembranes, to lean it against the substrate surface, either to stabilize the chelicerae movents or even to support the incorporation of nutrients again by forming a slight underpressure, or both.

Mite species Bonomoia opuntiae

Early observations during times of my phd-thesis on the mite Bonomoia opuntiae could show that the mouthpart apparatus of this terrestrial/semiaquatic mite works well also under water or inside a watery juce of decomposing cactus pieces. There even a filter function comparable with a fishing net was hypothesised, but so far was never studied in detail. The very distinct fringes along the palparmembrane lobes in this mite species might support this theory. I also studied the semiaquatic mite Sarraceniopus nipponensis feeding inside watery environments (normally the digestive fluids of Sarracenia pitchers), again never focussing in detail in how excactly the feeding mechanism works.

A putatively new species

The herewith presented video shows behaviors of  a female of the putative new species Histiostoma sp. , which I discovered in beginning of 2019 in sapropel around ponds inside an old gravel pit area in the Berlin forest Grunewald. The footage is presented in slow motion. The question was about how motile the whole gnathosoma apparatus in a histiostomatid species can be and what kinds of movements occured. As the settings, which I in early years of my mite studies used for videographic studies, were simplyfied and thus unnatural (smooth agar surfaces), I thought it being necessary and important to capture behaviors in a complexly sculptured habitat, namely surfaces of decomposing potato pieces (on which most histiostomatid species use to develop well).

It was visible, based on the specimens of my video of this species, that histiostomatid mites can be able to lift up their entire gnathosomas on a sometimes even higher position than the levels of the rest of their bodies. Additionally the gnathosoma can be turned to the right and to the left. Up and down as well as sideward movements of the whole feeding apparatus were often performed and represented obviously flexible reactions of the mite to the surface structure of the substrate and to the availability of suitable nutrients. In this context I was also interested in details of the movements of the chelicera tips themselves.

Chelicera endings (digitus fixus)

Although they can be used dagger-like and be accurately inserted into muddy substrate mounts, chelicera tips will also appear in a very fragile and seemingly careful way, when palpating the surface of the substrate underneath. Such chelicera movements are visible in the footage of this video, presented in slow motion (about 25 percent of original speed) and in a digital magnification. I interpret this visible fragility caution of the chelicerae as one option to discover suitable food sources. Other important organs perceive the mite’s environment chemically, modified setae, namely the so called solenidia, which might additionally recognize profitable microorganism sources.

Fig. 2

Mite Histiostoma feroniarum feeding from substrate mounts inside its original habitat (A-F). Rounded particles might represent yeast bodies. D = distal chelicera endings (digitus fixus), holding food particles, fixation with hexamethyldisilazane, SEM photography, copyrights Stefan F. Wirth

Berlin, September 2019

Copyrights Stefan F. Wirth

Mite Histiostoma sp., putatively new species, from mud around ponds (Berlin) and its morphology

Gravel pit area „Im Jagen 86“ in Berlin as biotope

 

„Im Jagen 86“ is a former gravel pit area in the Berlin urban forest Grunewald. It today represents a dynamic biotope, consisting of different types of habitats: mud around ponds, sand dunes, dry grassland and forest. Since the early 2000th, its habitat composition partly changed remarkably. Out of several (smaller) ponds, only one bigger pond remained. All ponds originally were surrounded by sapropel, a habitat for different interesting organisms, such as beetles of Heterocerus, Elaphrus and Bembidion. The mite Histiostoma maritimum was commonly found phoreticaly on Heterocerus and Elaphrus. I additionally in those early 2000th described the new mite Histiostoma palustre from Hydrophilidae of Cercyon and Coelostoma, living inside the saporopel as well. Today only a few small areas with open sapropel exist. I so far did not look for Histiostoma maritimum again and don’t know, how common it still is. At least Heterocerus beetles are harder to find than in earlier years. I so far did not found Histiostoma palustre again.

 

Rearing conditions of a putatively new mite species

 

I collected new mud samples in March 2019 at different areas, but found developing histiostomatid mites in a sample from the edge between mud (sapropel) and mosses. It is a species I never found before there and which might represent a new species. Only females could be morphologically studied. Nymyphal stages (not deutonymphs) are only available as video footage. No males were found. I had added bigger potato pieces to stimulate microorganism growth as mite food into the soil sample (room temperature). After about one month, a few mites (females and proto/tritonymphs) developed on only one of these potato pieces and quickly died out shortly after my filming activities and after I could prepare a few females. I actually try to get them reared again. Due to the low temperatures in March, it is considered that these mites hibernate independently from insects in the substrate. No bigger insects could be found in the substrate, which might be the corresponding carriers. But different dipterans (e.g. Ceratopogonidae) developed, they had no mite deutonymphs after hatching in my sample.

 

 

 

 

Morphological reconstruction of females and important characters as well as behavioral observations

 

The females of Histiostoma sp. differ from other females, which I know, by the mosaic of the following characters: body conspicuously elongated with a distinctly big distance between hind ringorgans and anus, digitus fixus almost simple shaped, fringes or ridges on palparmembrane, 6 dorsal humps, unusually big copulation opening. Leg setation not yet studied. One pair of ventral setae hardly visible (not in the drawing). Nymphs were observed during burrowing activities (footage), females are may be also able to. Deutonymphs or males would be useful to decide, whether the species is new. Some species are only described by deutonymphs.

 

Berlin, March/ June 2019 All copyrights Stefan F. Wirth

Arapaima gigas, einer der größten Süßwasserfische – doch was sind Fische eigentlich?

Sie sind beeindruckende Fische, nicht nur aufgrund ihrer Größe. Und doch kennen die meisten Menschen sie nur aus den Aquarienhäusern zoologischer Gärten. Arapaima gigas wird mindestens zwei Meter lang und erreicht in Ausnahmefällen sogar Längen von über drei Metern. Beheimatet ist die Art im Bereich des Amazonas-Beckens und ist in Peru, Brasilien und Guyana verbreitet.

 

Arapaima gigas, einer der größten bekannten Süßwasserfische aus dem Amazonas-Gebiet

 

Arapaima ist ein Räuber. Erwachsene Fische ernähren sich von anderen Fischen sowie Tieren in vergleichbarer Größe, wie zum Beispiel auch kleineren Säugern. Besonders auffällig sind die kräftig gestalteten großen Schuppen, die den Körper der Tiere umschließen. Sie dienen unter anderem als mechanischer Schutz gegen Angriffe durch Feinde. So können sie beispielsweise den Attacken der im selben Lebensraum beheimateten Piranhas, die zwar wesentlich kleiner sind, aber bekanntlich empfindliche Beißwerkzeuge besitzen, wirkungsvoll widerstehen. Das schützt Arapaima freilich nicht vor seinem größten Feind, dem Menschen. Er ist ein beliebter Speisefisch, der durch massenhafte Bejagung in seinem Bestand immer wieder gefährdet wird.

Arapaima gigas wird häufig als größter Süßwasserfisch der Welt bezeichnet. Dies basiert jedoch auf Übertreibungen. In Wahrheit befindet er sich in der Größenordnung des Europäischen Welses, dem größten europäischen Süßwasserfisch.

 

„Fische“ ist keine spezielle systematische Gruppierung

 

Ich verwendete bislang stets unkommentiert den Begriff „Fisch“. Was sind Fische eigentlich?Welche sogenannte Fische kennt man noch? Wie verhält es sich beispielsweise mit dem Bullenhai, der über drei Meter lang werden kann und neben marinen Habitaten auch im Süßwasser auftreten kann. Kann er als Gigant des Süßwassers mit dem Arapaima, dem Gigant aus dem Amazonas verglichen werden? Nach evolutionsbiologisch-systematischen (=phylogenetisch) Gesichtspunkten kann er das nicht. Der Begriff „Fisch“ bezeichnet nämlich keine spezielle, systematisch in sich geschlossene Gruppe. Stattdessen haben wir es mit einem deskriptiven Begriff zu tun, der alle Tiere umfasst, die in ihrer Gestalt ganz grundsätzlich eine gewisse Ähnlichkeit mit dem Goldfisch aufweisen.

Wenn wir außer Acht lassen, dass auch „Tintenfische“ und „Walfische“ nach demselben Muster benannt wurden, die bekanntlich zu den Mollusken und Säugetieren gehören, weist die Fischgestalt zumindest in den meisten Fällen auf eine irgendwie gestaltete Verwandtschaft hin. Jedoch sind Haie und Arapaima dennoch nicht sonderlich nahe miteinander verwandt.

 

https://www.instagram.com/p/BtpEhIGlCWf/

Bei den „Fischen“ handelt es sich nämlich um eine sogenannte paraphyletische Gruppe. Das heißt, sie umschließt zwar eine ihnen allen gemeinsame Stammart, jedoch keineswegs alle dazu gehörigen Tochtergruppen. Dazu würden nämlich auch alle Landwirbeltiere gehören. Eine vergleichbare paraphyletische Gruppe stellen beispielsweise die „Reptilien“ dar, zu denen Eidechsen/Schlangen, Schildkröten, Krokodile und alle Dinosaurier gehören. Da die Vögel aus den Dinosauriern hervorgingen, jedoch nicht zu den „Reptilien“ gezählt werden, haben wir es unter dieser Bezeichnung wieder mit einer Stammart und nur einem Teil aller Tochtergruppen zu tun, die allerdings im Stammbaum der Tiere nebeneinander stehen und daher näher miteinander verwandt sind, so wie auch bei den „Fischen“.

Im Falle der „Fische“ (paraphyletische Gruppen werden häufig in Anführungszeichen gesetzt) verhält es sich so, dass die verschiedenen als Fische bezeichneten Gruppen neben nur ihnen eigenen Merkmalen auch unterschiedliche Merkmale aufweisen, die auf eine Ahnenlinie hin zu den Wirbeltieren zurückgeführt werden müssen. Was unterscheidet also Knorpelfische (zum Beispiel Haie) und Strahlenflosser (Actinopterygii = echte Fische) voneinander? Eine Frage, die so in der modernen Systematik, die stets nach Gemeinsamkeiten sucht, eigentlich nicht gestellt wird. Richtiger ist es, zu fragen: Welche Merkmale teilen die Knorpelfische mit den Landwirbeltieren (z. B. knöcherner Schädel, Kiefer) und welche die Strahlenflosser (z.B. Lunge). Wenn man dennoch über Unterschiede sprechen möchte, ist festzustellen, dass Knorpelfische noch keine Lunge, die mit jener der Landwirbeltiere homolog ist, besitzen, Strahlenflosser aber schon. Die Lunge ist also auf der Ahnenlinie der Knorpelfische hin zu den Strahlenflossern evolviert. Anders als die „Fische“ sind die Strahlenflosser, die ich hier auch als echte Fische bezeichne, sehr wohl eine geschlossene systematische Einheit (=Monophylum), die auf Merkmale einer gemeinsamen Stammart zurückgeführt werden kann, die nur dieser Gruppe eigen sind. Ein Beispiel ist die namengebende Gestalt der Flossen, die durch Flossenstrahlen durchsetzt sind.

 

Zuerst gab es Lungen, aus denen Schwimmblasen evolvierten

 

Die Strahlenflosser (Actinopterygii), zu denen neben unzähligen Arten auch Arapaima gehört, besitzen also in der Tat ursprünglich paarige Lungen als Respirationsorgane. Diese sind demzufolge nicht erst vor dem Abzweig der Lungenfische entstanden, die als nächste Verwandte der Landwirbeltiere gelten. Die dortige Neuerung betrifft, anders als der Name Lungenfisch vermuten lässt, die Evolution eines Lungenkreislaufs, den es bei urtümlichen „Fischen“ mit Lunge noch nicht gegeben hat.

Aber besitzen echte Fische (Actinopteryii) nicht Schwimmblasen und atmen ausschließlich durch Kiemen? Mitnichten. Ursprüngliche Vertreter der echten Fische werden beispielsweise durch die Flösselhechte (Polypteriformes) representiert, die paarige sackförmige Lungen besitzen und neben der Kiemenatmung daher auch atmosphärische Luft veratmen können. Diese beeindruckenden Tiere können sich mithilfe ihrer Flossen nicht nur an Land fortbewegen, sondern lassen sich (es gibt Experimente an Senegal-Flösselhechten) auch unter vorwiegend terrestrischen Bedingungen in Terrarien halten.

Erst innerhalb der echten Fische ist die Schwimmblase entstanden, die sich durch Evolution aus den Lungen heraus bildete. Die fachgerechte Beschreibung lautet daher: Lunge und Schwimmblase sind einander homologe Organe. Innerhalb der Actinopterygii gibt es einen evolutiven Trend, demzufolge die Schwimmblase bei urtümlicheren Vertretern (noch) der Atmung dient, bei evolutiv weiter abgeleiteten Vertretern hingegen nur noch die Funktion der Austarierung im Wasser übernimmt.

Allerdings ist es innerhalb der echten Fische oftmals schwierig zu entschlüsseln und noch immer Gegenstand phylogenetischer Studien, ob die Lungenfunktion einer Schwimmblase einen Hinweis auf Urtümlichkeit darstellt, oder ob sekundär aus einer Schwimmblase mit Tarierfunktion erneut ein Atmungsorgan entstanden ist. In der Evolutionsbiologie werden im Übrigen unabhängige Entwicklungsschritte stets als Konvergenzen bezeichnet.

 

Arapaima gigas veratmet mithilfe seiner Schwimmblase atmosphärische Luft

 

Auch Arapaima gigas ist ein Luftatmer, der auf den Einsatz seines zusätzlichen Atmungsorgans in Form einer Schwimmblase sogar angewiesen ist. Er ist ein obligater Schwimmblasenatmer, der atmosphärische Luft an der Wasseroberfläche mithilfe seiner Mundöffnung aufnehmen muss. Dies wird als Anpassung an den häufig sauerstoffarmen Lebensraum der Tiere interpretiert, die sich häufig in Überflutungszonen des Amazonasbeckens aufhalten, wo wenig im Wasser gelöster Sauerstoff zur Verfügung steht. Der Literatur zufolge muss Arapaima gigas alle fünf bis fünfzehn Minuten die Wasseroberfläche aufsuchen, um dort mit seinem oberständigen Maul Luft einzuschnappen.

 

Berlin, Februar 2019, copyrights Stefan F. Wirth

Eudicella colmanti – Mating behavior of a colorful beetle

Rose chafers represent a group of colorful beetles, which taxonomically belong to the Scarabaeidae and thus are relatives of famous beetles such as Scarabaeus sacer, well known for rolling dung into balls and for being an important symbol for creation and the rising sun in the ancient Egyptian world. Even the stag beetles are more distant relatives of rose chafers.

 

Colorful and active during daytime

 

Unlike some related beetle clades, rose chafers are usually active during the day. This is also indicated by their very colorful bodies. Colors in insects can have different functions, but they usually all are optical signals, which require a visibility in the sun light. Greenish colors are common in rose chafer species and might have optical inner specific signal functions, but also might support an optical camouflage. This would also make sense in the preferred habitats of the adult beetles, which usually feed on softer parts of blossoms and on their pollen. But they also feed on fruits, whereby mostly liquids are incorporated as the chewing mouthparts are not very well developed.

 

Tropical rose chafer Eudicella colmanti during its copulation behavior, 4K videography, copyrights Stefan F. Wirth.

 

Tropical rose chafers from African countries

 

About 3000 species of rose chafers are known, of which most inhabit the tropical zones. The about 20 species of the genus Eudicella are more or less restricted to the African continent.

Eudicella colmanti is native to Gabun, Kamerun and Kongo, thus a species with a main distribution in Central Africa. But E. colmanti is like other species of this genus worldwide often kept in terraria, although species like E. smithi are more common inhabitants of this kind of artificial habitats. They all can be more or less easily reared.

 

Specific flying mode and copulation behavior

 

This is why I was able to study behavioral characters in detail. And rose chafers indeed show interesting behaviors. They for example perform a unique way of flying. It is a specific character of rose chafers (a so called apomorphy) that they fly with closed fore wings, which cannot be opened as in other beetles.

I documented in my video the mating behavior of a beetle couple. Interestingly this was not too difficult, although both genders can, when separated from each other, react to disturbances with a high agility.

 

Almost permanent copulation activities

 

But in the copulatory position, they accepted to be removed from their terrarium to the filming set and even stayed in position, when they were enlighted from different positions with very bright light beams. Please note the the female, which I observed regularly actively searching for a position underneath the male (behavior not clearly visible in my footage). But it also conspicuously never stopped feeding (on an apple) during the copulatory process (very well visible in my footage), obviously to obtain enough nutrients for the production of eggs. A copulation in my couple is not a unique event, but is repeated regularly and can take hours.

 

Phoretic mites

 

Both genders carried bigger numbers of mites. These were phoretic deutonymphs of the taxon Astigmata (Acariformes, Acaridae). As never determined the mite species, as it was not clear, whether it represented a natural associate of these tropical beetles, or whether it was a species native to Germany, which for example was carried into the terrarium via Drosophila flies.

Copyrights Stefan F. Wirth, Berlin March 2017/ February 2019

Berlin forest Grunewald – former gravelpit area, type location for the mite Histiostoma palustre

The city of Berlin geomorphologically consists of witnesses of the Weichselian glacier. The modern city itself and adjacent federal states represented end moraine areas with fluvio-glacial debris accumulations,  even well visible today due to a very sandy soil composition and a corresponding vegetation, creating landscapes, which partly almost look like from around the Mediterranean Sea.

Sands carried by the glaciers towards their end positions remained in partly huge layers with a thickness of up to 20 meters or more.

 

Gravelpit zone and its history

 

Also the area of the old gravelpit zone, called „Sandgrube im Jagen 86“, in the Berlin forest Grunewald is located inside such an end moraine zone, which was represented by plates belonging to the geological Teltow-plateau. In the time period between 1966 and 1983, gravel was excavated for industrial purposes. After 1983 a part renaturation was supported by nature conservationists. In 1992 in total 13 hectares of the former gravelpit area were allocated as nature conservation areas.

Other parts of this unique landscape remained accessible for the public. They represent today popular places for leisure and experiences of nature. Especially the huge sand dune is a popular destination for families with children.

 

Aerial videography of the gravelpit area in January 2019, copyrights Stefan F. Wirth. Please like my video also on Youtube, in case you like it.

 

 

Gravelpit zone and its ecology and biodiversity

 

The whole area – nature protection and accessible zones – show a complex mosaic of different  landscape types, offering numerous animal and plant species a well suitable refuge.  Neglected grasslands and dry meadows are surrounded by sandy areas free of any vegetation („dunes“) and moist osier beds and wetlands with ponds. The wetlands represent breeding grounds for numerous amphids. Lizards such as the sand lizard Lacerta agilis and snakes such as the grass snake Natrix natrix can regularly be observed. Sandy habitats offer space and specific ecological conditions for a interstitial fauna, consisting for example of different bee and sand wasp species.

In total the area bears more than 300 ferns and flowering plants, 16 breeding bird species, 7 amphibian species and 188 butterfly species.

 

My own scientific mite research in the gravelpit area

 

I was performing scientific research in that gravel pit landscape during the work on my phd-thesis between 2000 and 2005. My interest was (and one of my interests is still) focussed on specific organisms living around the shoreline of ponds.

The whole area of the gravelpit landscape is a good example for ecological changes that happen naturally with the ongoing time or even being affected by climatic changes. Between 2005 and 2018, the landscape partly changed significantly. Neglected grasslands and dry meadows covered less space originally, and instead several smaller ponds existed and offered amphibs and wetland inhabiting insects additional habitats. But some of the ponds already years ago dried out permanently. Their remnants are now covered by extended dry grasslands.

In former times of my phd thesis and even today, my research interests focus and focussed on the mite fauna in and around the muddy shorelines of ponds inside this former gravelpit area. The ponds are mostly surrounded by sapropel, a seemingly black and brownish mud, which is colored that way due to the incorporation metal sulfides. These muddy areas develop due to biochemical modifications of organic material in the absence of oxygen. Different insects, especially beetles live on top of these waterside habitats or even inside. Carabids of genera Elaphrus or Bembidion represent predators, while heterocerid beetles of genus Heterocerus are substrate feeders, presumanly with a preference for diatoms. Also water beetles of Dytiscidae and Hydrophilidae inhabit these habitats.

 

The mites Histiostoma maritimum and Histiostoma palustre

 

I discovered some of these beetles as dispersal carriers for specific mites. The dispersal strategy to take a ride on bigger animals to become carried from one habitat to another is called phoresy. Mites of the Astigmata represent typical phoretic organisms. I am scientifically specialized in a specific family of the Astigmata, which is named Histiostomatidae, and I discovered the mite species Histiostoma maritimum Oudemans, 1914 on Heterocerus fenestratus and H. fusculus as well as on Bembidion and Elaphrus species insside and on top of these muddy zones. I was the first acarologist, who ever studied the biology of this mite species. I furthermore discovered another mite species that was completely new to the scientific knowledge, and thus I scientifically described it as Histiostoma palustre („palustris“ = „muddy“) in 2002.

This species deserves particularly mention due to an unusual biological phenomenon: populations show a so called male dimorphism (better diphenism). Besides males with a „normal“ morphology, morphologically modified males appear. Their second legs differ from the typical shape of a mite and are modified into clasping organs. The function of these conspicuous organs could so far only be interpreted in the context of male to male competition conflicts for a female. In such situations, I observed the organs being used as arms against other males, against such ones with and such ones without clasping organs.

 

img_0015.jpgbest

Right modified leg of a male of Histiostoma palustre. Copyrights Stefan F. Wirth, 2002/ 2019

 

img_0016best

Modified leg of a H. palustre male in closed position. Copyrights Stefan F. Wirth, Berlin 2002/ 2019

 

img_0017.jpgbest

Underside of a H. palustre male with modified leg. Copyrights Stefan F. Wirth 2002/ 2019

 

img_0013.jpgbest

Asymmetry: male of H. palustre with only the right leg modified. Copyrights Stefan F. Wirth 2002/ 2019

 

img_0012.jpg best

Asymmetry: male of H. palustre with only the left leg modified. Copyrights Stefan F. Wirth 2002/ 2019

 

img_0014.jpgbest

Copulation of a Histiostoma palustre male with both-sided modified legs. Copyrights Stefan F. Wirth, Berlin 2002/ 2019

 

img_0010best

Details of a copulation with a modified male, copyrights Stefan F. Wirth, 2002/2019

 

 

Berlin, January 2019. Copyrights Stefan F. Wirth