biologe

Just another WordPress.com site

Kategorie: Germany

Countryside of Berlin: urban green in a drone view (4K)

Many tourists from overseas use to visit European cities in a much too short time. For this reason they often miss an entire picture of for example the city Berlin, when inserting an only short interstop here. Especially winter tourists can experience the German capital as a sad a grey urban being with some architectural major sites and a remarkable party life only.

 

Climate and landscape types in Berlin

 

Berlin has a continental climate and shows a completely other face in summer. It’s a very green face. Not only is the center of the city then colorfully greened by numerous urban parks, which partly lay almost adjacent to each other, but also the outskirts, in major parts covered by forests and grasslands or fields, appear like green oases.

 

 

Countryside of Berlin as aerial videography, Copyrights Stefan F. Wirth, Berlin June 2019. Please give my video on youtube a like, in case you like it.

 

 

Lübarser Felder and surrounding

 

Lübarser Felder is an area of agriculture, being under the management of inhabitants of the adjacent village Lübars, which represents the only Berlin village that still practices agriculture. The village has a long history and still has architectural monuments, dating back to the 19th century. Lübarser Felder lay adjacent to a nature refuge area more in the north, consisting of different kinds of wetlands, such as bog meadows or lowland fens. Lake Köppcensee as part of that nature refuge area is visible from a bigger distance in one scene of my video.

 

Püttberge and surrounding

 

The sanddune-mounts Püttberge are located in the east of Berlin and belong to the nature refuge area Wilhelmshagen-Woltersdorfer Dünenzug. The area consists of sandy mounts, some of them reaching a height of up to 68 meters. They are part of the glacial valley of Berlin, which dates back to the Weichselian glaciation, which happend between 115,000 and 11,700 years ago and covered almost the whole Northern Europe. The dune elevations of Püttberge were formed due to windblown sand inside the glacial valley. My footage shows the Wilhelmshagen-Woltersdorfer Dünenzug in a greater distance seen from the edge of the whole area. Ecologically the Püttberge are characterized by numerous plants and animals, being typical for sanddune environments.

 

Lieper Bucht at river Havel

 

Lieper Bucht is a bathing beach area at river Havel, belonging to the Berlin city district Nikolassee in the South-West of Berlin. The adjacent forest area is the huge urban forest Grunewald. The riverside of Havel in Berlin is geologically charactrized as sandy with a tendency to the formation of dunes, being like Püttberge a relict of the Weichselian glaciation. Flora and fauna are correspondingly composed. Pine trees for example are typical representatives. The nearby Havel islands Lindwerder and Schwanenwerder are visibe in my footage.

 

Berlin, June 2019

Copyrights Stefan F. Wirth

Werbeanzeigen

Mite Histiostoma sp., putatively new species, from mud around ponds (Berlin) and its morphology

Gravel pit area „Im Jagen 86“ in Berlin as biotope

 

„Im Jagen 86“ is a former gravel pit area in the Berlin urban forest Grunewald. It today represents a dynamic biotope, consisting of different types of habitats: mud around ponds, sand dunes, dry grassland and forest. Since the early 2000th, its habitat composition partly changed remarkably. Out of several (smaller) ponds, only one bigger pond remained. All ponds originally were surrounded by sapropel, a habitat for different interesting organisms, such as beetles of Heterocerus, Elaphrus and Bembidion. The mite Histiostoma maritimum was commonly found phoreticaly on Heterocerus and Elaphrus. I additionally in those early 2000th described the new mite Histiostoma palustre from Hydrophilidae of Cercyon and Coelostoma, living inside the saporopel as well. Today only a few small areas with open sapropel exist. I so far did not look for Histiostoma maritimum again and don’t know, how common it still is. At least Heterocerus beetles are harder to find than in earlier years. I so far did not found Histiostoma palustre again.

 

Rearing conditions of a putatively new mite species

 

I collected new mud samples in March 2019 at different areas, but found developing histiostomatid mites in a sample from the edge between mud (sapropel) and mosses. It is a species I never found before there and which might represent a new species. Only females could be morphologically studied. Nymyphal stages (not deutonymphs) are only available as video footage. No males were found. I had added bigger potato pieces to stimulate microorganism growth as mite food into the soil sample (room temperature). After about one month, a few mites (females and proto/tritonymphs) developed on only one of these potato pieces and quickly died out shortly after my filming activities and after I could prepare a few females. I actually try to get them reared again. Due to the low temperatures in March, it is considered that these mites hibernate independently from insects in the substrate. No bigger insects could be found in the substrate, which might be the corresponding carriers. But different dipterans (e.g. Ceratopogonidae) developed, they had no mite deutonymphs after hatching in my sample.

 

 

 

 

Morphological reconstruction of females and important characters as well as behavioral observations

 

The females of Histiostoma sp. differ from other females, which I know, by the mosaic of the following characters: body conspicuously elongated with a distinctly big distance between hind ringorgans and anus, digitus fixus almost simple shaped, fringes or ridges on palparmembrane, 6 dorsal humps, unusually big copulation opening. Leg setation not yet studied. One pair of ventral setae hardly visible (not in the drawing). Nymphs were observed during burrowing activities (footage), females are may be also able to. Deutonymphs or males would be useful to decide, whether the species is new. Some species are only described by deutonymphs.

 

Berlin, March/ June 2019 All copyrights Stefan F. Wirth

Late winter insect life: winter aconite blossoms and dipteran visitors

When do the first insect activities in the new year occur? Can insects be active in winter, even in the presence of snow? The answer is generally yes, different insect species even use to appear on warmer winter days on top of snow layers. Examples are the limoniid crane fly Chionea belgica, a wingless dipteran, which can be observed on milder winter days on snow surfaces along forest edges in Central Europe. Also the fly Trichocera hiemalis belongs to the winter crane flies (Trichoceridae) and can be characterized by a very well developed cold resistance. It appears on sunny winter days between branches of leafless trees in swarms around invading sunlight beams.

 

The winter aconite as an early blooming flower and its biology

 

But what about insects, visiting blooming flowers? This requires the existance of early blossoms, which can grow and bloom under winter conditions. A well known example is the winter aconite Eranthis hyemalis, which outlasts the summer period only by its underground tubers. Their conspicuous yellow blossoms belong to the first blooming flowers in the year. In Central Europe, they begin to grow under suitable conditions in mid February. They require milder temperatures, but even persist in case an unusual cold snap would happen. The blossoms open only at sunshine and thus close shortly after sunset. Opening and closing is a growth process, which depends on temperature conditions. Such a phenomenon is called thermonasty.

 

The winter aconite as a neophyte in Germany

 

In Central Europe, such as in Germany, E. hyemalis is a neophyte. It is originally native to Southern European areas, Turkey, South-East-France, Italy, Bulgaria and Hungary.

The species was introduced to Central Europe (and North America) as ornamental plant for gardens. It is proven that it was in Germany already cultivated since the 16th century. The German botanist, nature researcher and medical doctor Joachim Camerarius reared the winter agonite, which he brought from Italy, since 1588 in his backyards.

 

Common pollinating insects

 

Pollinating insects of E. hyemalis are flies, bumblebees and bees. To reach the nectar inside the blossoms requires a proboscis length of about two mm, which is mostly given in bumblebees and bees.

 

Flowerbed in Berlin urban park Schillerpark

 

I documented via my videography (4K) and photography a smaller area of winter aconites in front of a wall at urban park „Schillerpark“ (honoring the German poet Friedrich Schiller) in Berlin. The bright bricks of that wall reflected efficiently the solar warmth and thus created suitable conditions for a late winter flowerbed full of life.

 

Video with winter aconite blossoms and pollunating flies, copyrights Stefan F. Wirth.

 

Most abundant insects in that winter aconite bed

 

DSC03573bestsharpsignatur

Western honey bee, copyrights Stefan F. Wirth

 

The western honey bee Apis mellifera was often seen on blossoms, but unfortunately was not captured via video footage. Our honey bee hibernates in a so called winter clusters with lower temperatures and low activities in workers. Beginning in late winter/ early spring, workers increase the nest temperature due to body movements up to 35°C. This is exactly the body temperature, workers need to fly out and collect first nectar and pollen, for example from the winter agonite.

 

Drone fly on blossom of the winter aconite, copyrights Stefan F. Wirth

 

The drone fly Eristalis tenax belongs to the hoverflies (Syrphidae). Their larvae develop in watery environments, where they use their conspicuous snorkel tube to breath air at the water surface. Adults are typical blossom visitors, preferring Asteraceae and Apiaceae. Interesting highlight of their biology is the migratory behavior. These migratory insects form swarms, which cross the Alpes towards Southern European areas by using suitable wind conditions, where they finally hibernate and reproduce. The next generation returns the same way back. Not all individuals participate these migratory flights and would try to hibernate in Central Europe. Hibernating individuals are always females, which were fertilized prior to their winter diapause or their migration and which lay their eggs in the subsequent spring or in southern regions during winter. In Germany they only survive in greater numbers in milder winters, which they persist in temperature-stable hideways, such as gaps inside walls or wooden habitats. These specimen can be usually observed early in the year, beginning with March, when visiting blooming flowers. Their numerous very early appearance in mid February 2019 might be due to a very warm summer 2018 and a subsequent very mild winter in north-eastern Germany (Berlin). I have no comparative findings regarding the usual blooming time of the winter aconite and the abundance of drone flies there for Berlin or even this specific urban park. I also don’t know about indications that due to a global warming, as in some migratory birds, less specimens of the fly would migrate and more stay to hibernate here around.

The research station „Randecker Maar“ in the Swabian Jura records changes in migratory flights of birds and insects. They discovered a distinct decline of numbers of migrating drone flies and interpret it as a result of the increasing application of poisonous substances in the agricultural sector. Whether they additionally consider this being due to more individuals hibernating, where they are, based on generally warmer temperatures (global warming) is unknown to me.

 

Blow fly on blossom of the winter aconite, copyrights Stefan F. Wirth

 

The blow fly Calliphora vicina is a common blossom visitor in early spring and autumn. This fly, typically appearing in human settlements in Europe and the New World, is well adapted for an activity at lower temperatures (more than 13°C). While larvae develop in decomposing organic tissue (such as cadavers of animals), adults feed on nectar and pollen. They additionally incorprate saps from organic material with a strong odor.

C. vicina produces about five generation per year and throughout the year. The flies can even be active in winter, when temperatures reach a suitable level.

 

Other fly species were existant, but I did not determine them.

 

Time of footage and photo recording

 

Video footage and photos were recorded between 16 and 18 February 2019 in the urban park Schillerpark in Berlin.

 

Copyrights: Stefan F. Wirth, Berlin 2019.

Phoretic Mites waiting on Ant Pupae

Greater numbers of pupae from a nest of the myrmecine ant Myrmica rudinodis are attached by phoretic mites, which wait for these pupae to hatch. They would then attach the newly developed ants to be carried around and dispersed this way. They this way had already occupied their later ants before, namely during their pupal stage, one could call this phenomen „pupa-guarding“. In my samples, I discovered two species of mites performing this pupa guarding behavior. Most abundant were deutonymphs of the mite Forcellinia wasmanni (Astigmata). But also individuals of a mite species of the Gamasina were repeatedly discovered sitting on pupae, where they were hiding between head, ventrum and limbs of the pupa. They even seemed to defend their pupae, when they felt disturbed, e.g. by my filming activities.

 

Ant pupa guarding by mitees, looking for a carrier for dispersal

 

These pupa guarding-findings concerning this ant and with these corresponding mite species might be new to science (so far I didn’t found literature indications) and thus need to be studied closer in the future in order to understand the whole context of behaviors. In the footage, two types of pupae are visible, pupae of the winged alates and those of workers. Mites generally prefered both, but especially the deutonymphs of Forcellinia wasmanni seemed to appear more often on the pupae of later workers. Most pupae had at least one deutonymph attached, rarely, there were found up to four individuals. This is different to what could be found on older workers. They on their ventral side can have 4-6 deutonymphs. Many workers seem to be covered with the deutonymphs, but I didn’t check more workers until now, so I can’t say, how many were without mites. It is unknown, how deutonymphs come to the pupae, whether they simply leave older workers for the pupa-guarding or whether they were waiting in the soil for the pupae to arrive (due to the brood caring activitoes of the ants).

Mite-Life inside an ant nest. Copyrights Stefan F. Wirth 2015/18

 

Astigmatid mite with a strict relationship to ants

 

The mite Forcellinia wasmanni is known to be strictly associated with ants (e.g. Türk & Türk 1957). It is clear that attaching young female alates would secure the dispersial of the mite into a new ant nest. It is not clear, which function the transport via ant workers can have. But Türk & Türk (1957) mention that the free living instars of Forcellinia wasmanni would feed on dead ants. Such a kind of microhabitat for the development is not unique in astigmatid mites. Some species within the Astigmata are known to have such preferences for decaying cadavers, but are then feeding on microorganisms, which grow on these (insect) cadavers. Ant workers might be ideal to carry mite deutonymphs to new cadavers, where they would leave and develop. Ants generally have a very well developed hygienic behavior. This guarantees the mites to get access to cadavers regularly. I do not know any other video footage, showing living deutonymphs attached to their carriers on such a magnification level as visible in this film. The original footage of these deutonymphs is much longer.

 

Morphology and behavior of the dislersal-instar, the so called „deutonymph“

 

The function of the proterosoma (dorsal shield of the forebody) is acting as a flexible structure, protecting the mouthpart-area (non-functional in deutonymphs) and the fore-legs, but being very motile and being easily pushed backwards (under the following hyterosoma-shield), when the mite lifts up from the surface of the ant pupa. I cannot state much more concerning the second mite, found on pupae, which is a species of the Gamasina. I discovered this phenomenon only on three of my pupae. Ant nests represent complex communities of organisms, to which fungae, other insects, mites and nematodes can belong. The samples visible in this film were collected in July 2015 on the German island Usedom inside a forest area between the villages Zinnowitz and Karlshagen. The ant nest was quite small. An ant hill was not visible.

 

Complexity of life in ant nests

 

The complexity of life within ant nests is a result of evolution. I am an enemy of creationistic movements, including all modern faces of creationism. Creationism stimulates carelessness und illiteracy in the believing people.

 

 

Berlin August 2015/ December 2018, copyrights Stefan F. Wirth

Berlin Forest Grunewald and River Havel-Waterside

River Havel

 

The river Havel has its source in the Mecklenburg Lake Plateau and after 94 km flows in the area of the border between the federal states Brandenburg and Sachsen-Anhalt into the big river Elbe.

Havel runs besides the already mentioned states Brandenburg and Sachsen-Anhalt also through Berlin, the capital city of Germany. On its way, the river passes several bigger and smaller lakes, which serve as water reservoirs, even in hot summers, in which many german rivers and lakes from low water levels.

In its most parts, Havel is navigable, and weirs and locks regulate water levels and water supply.

Historically, Havel since at least 928 of our Western calculation played importent roles as natural border and water route. Through the middle ages up to times of the GDR wetlands as important ecosystems were stepwise drained. In more recent times the protection of unique nature refuges is proceeding. In 2004 for example, the Naturfreunde Deutschlands and the German Fishing Federation elected the Havel area as River Landscape of the year.

In 2005 the Federal Agency for Nature Conservation (BfN) and the Nature Biodiversity Conservation Union (NABU began the land restoration to create refuges for rare bird species , beaver, river lamprey, otters and other animals and plants.

The footage of my video was captured close to the bathing beach area „Lieper Bucht“. Visible are the Havel islands Lindwerder and Schwanenwerder as well as edges of the forest area „Düppeler Forst“.

River Havel and Forest Grunewald in Berlin, quadcopter footage. Copyrights Stefan F. Wirth, December 2018. Please like my video also on youtube, in case you like it.

 

Forest Grunewald

 

Adjacent to the Lieper-Bucht area, the huge urban forest Grunewald extends over 3000 hectare between the Berlin districts Charlottenburg and Zehlendorf.

It was elected as Forest Area of the Year by the Union of German Foresters in 2015. The Grunewald ecologically has a specific mosaic of ecosystems: heathlands, neglected grasslands, dunes, dandpits and marshlands. They all bear a remarkable biodiversity of rare animal and plant species.

Geomorphologically the Grunewald area was formed by galcio-fluvial processess during the Weichselian glaciation , which endet about 11600 years ago. Glacio-fluvial sands cobver the area in layers up to 20 meters and more.

The footage of my video also shows the so called Grunewald Tower. The memorial for the German Emperor  William I was planned in 1897 and finally built up by the architect Franz Schechten. The tower was finally inaugurated in 1899 and renovated between 2007 and 2011.

The footage was captured with a DJI Mavic pro quadcopter in mid December 2018.

 

 

Berlin, December 2018. Copyrights Stefan F. Wirth

Male and female of Histiostoma sachsi and unsuccessful mating with a „stranger“

Mites of the Acariformes vary in very different forms and life-strategies. One taxon of very tiny and soft-skinned mites is named Astigmata. Within them the familiy Histiostomatidae is especially rich of species, most of them surely not yet described or discovered.

 

Modyfied mouthparts and a specific mode of dispersal

 

These mites feed on microorganisms using a complex mouthpart-apparatus with multifunctional abilities. They can be found in habitats, which dry out quickly. When it’s getting too dry, a specific instar of the mites takes a ride on insects or other bigger arthropods for dispersal to a new and fresh habitat ( strategy called Phoresy).

Histiostoma sachsi is one of numerous (often closely related) long haired (in females) species. It was originally in 1957 described from cattle-dung. I found it in compost.

 

Long upper-setation in females and tactile camouflage (mimesis)

 

Adult females are characterized by a long setation on their uppersides. They use them to hold parts of the old nymphal cuticle and soil particles on their backs. This seems to be due to a strategy named mimesis or camouflage. It’s a tactile camouflage as an optical sense in this kind of microhabitats plays almost no role.

 

Normal and unusual copulation position, trial of an interspecific copulation

 

Males mate their females via a dorsal copulation opening and thus need to ride on them. In H. sachsi, that copulation opening is located very close to the hind-edge of the body. That way it is even despite of the camouflage cover accessible. It seems even slightly being elevated out of the body surface in order to surmount adjacent soil particles. This is an adaptation of this particular species. It might share such morphological characters only with very closely related (not yet described) species In other members of genus Histiostoma, the copulation opening is usually more centered related to the hind body.

The copulation position requires that males insert their aedeagus („penis“) into the copulation opening. They additionally use their legs to grasp into the females body. That kind of leg arrangement and thus the whole copulation position can differ from species to species.

This is why copulations between members of different species already fail, because the right copulation setting does not fit, nor does the shape of the aedeagous. Nevertheless the phenomenon of unsuccessful trials for interspecific copulations can sometimes be observed in laboratory cultures. Such a trial is also visible in this video, where a male of Histiostoma feroniarum (also appears in my compost samples regularly) tries to mate a female of H. sachsi. It cannot even almost get in a proper copulation position and seems to hold on to the dorsal camouflage cover of the female. it could only remain in a transverse position related to the female body and thus not get access to the copulation opening, normal would be a longitudinal position with the sameame orientation of female and male.

Adult mites of the family Histiostomatidae (Astigmata) and a „false“ copulation. Copyrights Stefan F. Wirth, Berlin December 2018. Please like my video also at Youtube, in case you like it.

 

Chemical communication and chemo-sensitive leg setation

 

Mites of the Astigmata communicate and find their general orientation due to chemo-sensitive setae, mostly on legs I and II, which are named solenidia. They are even on the magnification level of my footage well visible on the male’s legs. Although a direct body contact is not necessary for a innerspecific communication by chemically interpreting scents produced from mite glands, the observed male in my video repeatedly was seeking for intense body-contacts and obviously „observed“ his conspecific while doing so with its first two legs. This might have intensified the perception of pheromones.

It showed this behavior also, when passing by the „false copulation-pair“ described above. It additionally seemed to invest power in its leg movements as if it would try to remove the „competitor“ on the female, in this case even belonging to another species.

 

Competitive fights between males

 

That mites of the Histiostomatidae can use their strongly sclerotized first legs to fight under each other for an access to a female is known to me from my older observations about the species Histiostoma palustre and Histiostoma feroniarum.

 

Origin of the compost samples

 

The compost samples were collected in SW-Germany (Saarland in October 2018). The footage was recorded in December 2018 in Berlin.

 

Berlin December 2018, copyrights Stefan F. Wirth

Habitat compost: Mite Histiostoma sachsi carries old cuticle and dirt as camouflage

My parents have a compost area in their backyards. I use it as reference habitat for two mite species of the family Histiostomatidae (Astigmata): Since I began my research in 2000, the compost regularly contained Histiostoma feroniarum with its typical male dimorphism. Since summer 2017 another species appears additionally regularly: Histiostoma sachsi. Both species do not appear under the same conditions. While H. feroniarum prefers fresher decaying material, H. sachsi on visibly older decomposed tissue. There mite be even more mites of the Histiostomatidae exist in this complex compost habitat, but under my laboratory conditions, only the two named species were so far successfully reared out of samles always again. Regarding the determination of H. sachsi on a species level, I was more careful in my comments to a former video (June 17), in which I named it Histiostoma cf. sachsi due to doubts about a correct identification. Meanwhile, also due to the morphology of the deutonymph, I determine „my“ compost mite as Histiostoma sachsi Scheucher, 1957. But it is still to emphasize that Scheucher described H. sachsi from cattle dung, not from compost. But generally, both habitats can sometimes share the same inhabitants.

 

Adult females carry their old cuticles and „dirt“ on their backs as tactile comouflage

 

Biologically conspicuous is darkish material, which especially adult females carry on their backs. Unlike males, females posses elongated setae on their backsides. These setae support the holding of material such as old cuticle and soil particles. In slide preparations, this cover usually appears amorphic and contains substrate from the mite’s environment. My video footage indicates that the basis of this cover is a retained old cuticle from the former nymphal instar . That this cannot easily be proven with the light microscope is due to the very soft and fine character of the cuticles in these mites. Remnants might become decomposed by microorganisms after a while.

Compost: the habitat of the mite Histiostoma sachsi Scheucher, 1957 (Acariformes, Astigmata, Histiostomatidae). Copyrights Stefan F. Wirth, please like my video also on youtube, in case you like it.

 

The phoretic dispersal instar, named deutonymph, in mites of the Astigmata controls its body position due to sticky leg endings and suckers on their undersides

 

Deutonymphs of H. sachsi represent one of my resent models to study mite-dispersal behavior. My research focus since a while concerns ultrastructure and function morphology of the deutonympal suckerplates and other structures to attach to insects for dispersal (this dispersal strategy is called phoresie). The anterior front-suckers on the suckerplate of the mite’s underside is extendable and very flexible, not only to find a suitable position on the insect carrier. When falling, the deutonymphs use it to lift their bodies up into a proper position again. Additionally they will try to get hold using „sticky“ lobe-shaped setae on the endings of legs I and II. Both is visible in my footage. The forelegs seem generally to make the first contact, when trying to get on a suitable carrier.

 

Deutonymphs of Histiostoma sachsi take a ride on other mites (Oribatida)

 

The suitable carrier of H. sachsi is unknown to me. Some astigmatid species have even a range of carrier-„hosts“. In my samples, deutonymphs at least attach to other mites, especially to mites of the Oribatida. This is in a very short scene visible in my video too.

 

Copyrights Stefan F. Wirth, Berlin December 2018

Lake Teufelssee in Berlin as part of a glacial meltwater lead

Lake Teufelssee in the Berlin urban forest Grunewald is known since ancient times, but is even much older. This is unlike the adjacent hilly landscape, which is named Teufelsberg („Devil’s Mountain““, referring to the nearby lake). It represents an area of mounds of rubble, built up with debris of the destroyed Berlin after the Second World War. Teufelssee („Devil’s Lake“) however is part of a glacial chains of lakes, a result of a supraglacial stream from the period of the Weichselian glaciation.

Air-view footage of lake Teufelssee in Berlin. Copyrights Stefan F. Wirth, please like my video also on youtube,in case you like it.

 

Geomorphology of Berlin, lake Teufelssee and glaciofluvial sands

 

Berlin itself represents geomorphologically a push morain from the Weichselian glacier times (until 11.600 years ago). This until today explains the uniform and scarce vegetation in and around Berlin, which is due to specifically sandy ground conditions. Sand layers with a thickness of at least 20 m date back to glaciofluvial sands, being a result of the advance of a glacial tongue.

 

Vegetation and climatic zone

 

The stock of trees in the Grunewald area is dominated by oaks and pines, being well adapted to this ground composition and the Berlin geomorphology. The climate of the Berlin area is characterized as part of the temperate climate zone in the transition between maritime and continental climate. Aspects of the continental climate are predominant, which is why snowy winters as typical for the Southern parts of Germany are rare.

Instead winters are often very cold and with low precipitation unlike the hot summers, where most rainfall occurs. The winter 2018 to 2019 is following an unusually warm summer with long periods of heat and without rainfall. As a result, water bodies Germany-wide carried less water than usually. But in which intensity lake Teufelssee was or is still concerned is unknown to me. Differences to former years are not obviously visible.

 

Berlin recreation areas and the ancient origin of the term „devil“

 

Teufelssee and Teufelsberg represent local recreation areas and offer enthusiasts and families with children a popular playground in summer, and in case the lake is frozen, also in winter.

The appearance of the German word for „devil“ in Teufelssee and Teufelsberg is assumed to refer to an ancient place of worship in this area.

 

Copyrights Stefan F. Wirth, Berlin December 2018

Round-leaved sundew: How a fly can die

The round-leaved sundew Drosera rotundifolia is a carnivorous plant. It digests mostly small arthropods in order to gain additional nitrogen on floor coverings with a lack of sufficiant mineral nutriment.

 

Sundew and its digestive secretions

 

Along the edges of the rounded leaves, tentacles are arranged, which produce sticky secretions, consisting of enzymes and formic acid. Attracted by a fragrant smell, small animals approach this deadly plant.

Please like my videos also on youtube, in case you like them. Copyrights Stefan F. Wirth

 

The secretions trap them finally to the leave. After some hours the tentacles move towards the leaf-inside due to growth „movements“, where digestive glands are located. Later even the whole leaf rolls that way that more glands get into a contact with the prey. The whole digestive procedure then needs several days. My video only shows the effect of sticky tentakles to a fly, which finally is unable to flee.

 

Fly on a sundew leaf, independent evolution of carnivorous plants

 

The fly specimen might have represented a too large prey, which is why it at first resisted against the slimy and sticky secretions. However later, its body is thus covered with threads of adhesive that it remains fixed to the sundew leaf. Carnivorous plants evolved several times independently within the Angiosperma. That means that pitcher plants, as for example Sarracenia or Nepenthes, systematically do not represent close relatives of the sundew or even between each other. Under comparable ecological conditions, selective pressures caused options for plants to enrich their nutrients by the ability to digest smaller animals using specific organs, usually being homologous to leaves. The way carnivorous traps develop, differs in the various groups of carnivorous plants.

 

Micro-habitats for mites or nematodes

 

Decaying remnants of partly digested arthropods can especially in Sarracenia or Nepenthes become micro-habitats, in which mites or nematodes might find suitable living conditions. Some of them can even be resistant against digestive enzymes of these plants. Whether microorganisms ,such as mites, also can occur on sundew, is unknown to me. Common inhabitants of pitchers of Sarracenia or Nepenthes are represented by mites of the Astigmata, e.g. of the family Histiostomatidae.

 

Distribution of the round-leaved sundew

 

The round-leaved sundew is native to the whole northern hemisphere in bogs and wetlands.

 

Copyrights for film and text: Stefan F. Wirth, October 2017/ November 2018

A scarab beetle’s larva and pupa: habitats for mites and other organisms

The micro-world is complex. Its habitats intertwine themselves, some even are unusual, because they are formed by single animal individuals. An example is a holometabolic insect, here the tropical rose chafer Eudicella colmanti. The larvae of my specimens are covered with deutonymphs of an astigmatid mite (Acaridae, eventually Acarus sp.).

This makes the beetle larva to a habitat for these mites, although the mites in this case don’t feed or reproduce there. They instead are „only“ passengers on their transportation to a new „real“ habitat, where they become adult, feed and reproduce. This strategy to be carried by other organisms from one living place to another is called phoresy.

The situation in my terrarium might be artificial in the sense that mites are putatively not of tropical origin as the beetles (reared in Germany) and thus do not originally „belong“ to the beetle species. The mites might have reached into the terrarium via fruit flies or similar native organisms or via the terraria of the online shop, where they were bought. But the mite deutonymphs show a distinct affinity for adult beetles and their larvae nevertheless, which they attached in great numbers (not the pupa). The microscopic footage of the mite deutonymphs contains activities of their genital openings, located close to the sucker plates on their undersides.

They occasionally open and close and discharge secretions or water. This might be due to osmoregulation and/or in order to prove the adjacent sucking structure with moisture for a more stable hold.

The larva after some months built its pupa chamber, consisting of soil particles and larva secretions. Tese pupa chambers offer on their outer sides obviously enough nutrients for collembolans, which appeared there in greater numbers, especially on an older chambers with its pupa waiting to hatch. Mites of the Gamasida and tiny annelids could also be observed there. The video consists of macro fotage and microscopic footage, all recorded in 4K and rendered in an uncompressed quality.

 

Berlin, December 2017/November 2018, copyrights Stefan F. Wirth