More Specialists are needed to study our biodiversity: recognizing and describing new species, redescribing known ones, mapping their distribution and understanding their ecological role in an ecosystem.Thus we have to support our children and students to become fascinated by nature.
Also interested laypeople, hobby researchers and nature lovers can contribute to species preservation and nature conservation (and thus climate protection) and encourage their children or relatives to study biology or a similar subject.
Es werden mehr Spezialisten benötigt, um unsere Biodiversität zu studieren: neue Arten zu erkennen und zu beschreiben, schon bekannte Arten neu zu beschreiben, ihre Verbreitung zu kartieren und ihre ökologische Rolle in einem Ökosystem zu verstehen. Daher müssen wir unsere Kinder und Schüler dabei unterstützen, sich für die Natur zu begeistern.
Auch interessierte Laien, Hobbyforscher und Naturfreunde können einen Beitrag zum Arten- und Naturschutz (und damit zum Klimaschutz) leisten und ihre Kinder oder Angehörigen für ein Studium der Biologie oder eines ähnlichen Faches animieren.
I provide advices and information about the topics mites (in general, in your house or your company and in a hygiennic context), biodiversity, correlation biodiversity research and climate change, speciation processes, describing new species, species extinction, taxonomy for private people, educational institutions, e.g. schools or university students. Please see my menue item „Angebot biologische Beratung…“
Ich biete Beratung und Informationen zu den Themen Milben (allgemein, in Ihrem Haus oder Ihrem Unternehmen oder im hygienischen Kontext), Biodiversität, Korrelation Biodiversitätsforschung und Klimawandel, Artbildungsprozesse, Beschreibung neuer Arten, Artensterben, Taxonomie, für Privatpersonen, Bildungseinrichtungen, z.B. Schulen, oder Studenten. Bitte beachten Sie meinen Menüpunkt "Angebot biologische Beratung..."
We recently read a lot about the pandemic consequences of infections with the new corona virus Sars-CoV-2, most are medical issues, hygienic advises and information about political reactions in different countries worldwide. But there is not much known about the biological host reservoir, putative intermediate hosts and how the human infections might be explained. It is a normal lack of information, because the scientific research about topics, being generally new to science, is time costing, especially, when life strategies and the population dynamics of organisms a concerned. Organisms? Viruses are per definitionem not considered organisms, because they lack important aspects, which characterize real life: they cannot reproduce on their own power, they do not have an own metabolism, no ingestion, no excretion. But they are organic and show traces of life by possessing a genome, which might indicate that they evolved from living cells. Viruses represent a diverse group of protein bodies containing nucleic acid, either DNA or RNA.
New corona virus Sars-CoV-2, Wikipedia: CDC/ Alissa Eckert, MS; Dan Higgins, MAM / Public domain
Viruses in general, host specificity, host increase, host change
For reproduction viruses depend on living host cells, which they reprogram by inserting their virus genome into the cell’s genome in order to stimulate the forming of a number of virus copies, all that happening on cost of the host cell’s life. Thus viruses need to be named parasites as they harm their hosts to their own advantage. Different groups of viruses attack different kinds of cells using in detail different methods to enslave their host cells. There are plant viruses, viruses associated with bacteria (named bacteriophages) and animalistic viruses. They all show characters, which are typical for parasite – host – relationships. Parasitic partners of any kind of host – parasite – relationship can be exclusively associated with one host species only (host specificity) or a limited group of systematically closely related hosts, while others can have a wider range of different host species. The latter generally might have evolved out of the former, although also the opposite direction is thinkable. When former host-specific parasites make themselves one or even several further hosts accessible, then this phenomenon is named host-increase (Wirtserweiterung). In case an new host was infested as permanent host, while the former host is given up, then a so called host change (Wirtswechsel) happened. The same term is also used in a different context, namely when a parasite requires in its development a change between different hosts.
Host specificity: A parasite (or an organism with similar life-strategy) is associated with one host only, which requires a specialization and a competition between host evolution and parasite evolution (coevolution). This strategy needs to be separated from generalism, which means that a parasite has a very wide range of not related regular main hosts. Host specificity is more common than generalism. But this also depends on definitions. I herewith define the association with one main host species only as host specificity. But I furthermore consider host specificity also given, when parasite-host relations are specific on a higher taxonomic level, for example, when certain closely related genera of parasites are specialized for certain closely related genera of hosts. This part of my definition has variable borders. In the chapter after next, I describe the parasitic case of the trematode Leucochloridium paradoxum, whose main hosts are represented by different systematically not closer related bird species. A host specificy on the level of birds in general (Aves), then present in only some species with similar food preferences might already need to be named a limited generalism.
Obligatory host change in ticks and lifstyle-change in water mites
Some parasites need several hosts to be enabled to finish their life-cycles. This is another context, in which the German term „Wirtswechsel“ (host change) is used. In that kind of parasite – host – association, the host change is often obligatory, meaning that the parasite cannot survive in the absence of one of the required hosts. The castor bean tick Ixodes ricinus represents a parasite, which needs a host change to successfully go through its full development until adulthood, but there is a wider range of suitable hosts, as intermediate host and as final host. Thus the tick is a generalist with obligatory host change. Water mites (Hydrachnidia) are parasitic as first nymphs (juvenile instar, usually named „larva“) and predators as older nymphs and adults. A host specificity of „larvae“ can appear, but a wider range of host species is common. These mites perform a life style change during their development.
Intermediate host, for example in the parasitic flatworm Leucochloridium paradoxum
An example for a parasite, obligatory requiring a specific intermediate host, is the flatworm Leucochloridium paradoxum („green-banded broodsac“, Trematoda, Platyhelmintes), whose larvae (miracidium) need to infest snails of the genus Succinea. This trematode parasite is host specific for a genus of snails, while there is no specificity for their main hosts. They parasite birds, but infest different bird species, which are not closer related to each other, such as finches, the crow family Corvidae or woodpeckers. Although there is a main host specificity on the very high taxonomic level of Aves, the use of the term (limited) generalism might in this case even be appropriate. Inside the smail’s midgut gland, miracidia (larvae) modify into another larva-form, named cercaria, which invade the liver, where they form so called sporocysts, sac-shaped muscular tubes, which grow through the entire snail host until they reach the snail’s tentacles, which they fill up with their tube-shaped bodies entirely. Lastly the snail is unable to retract her swollen organs. The snail tentacles are now well visible as conspicuous greenish stripes, pulsating permanently. The sporocysts as larval stage of this trematode parasite do even more than only increasing the visibility of the snail for bird predators, which represent the worm’s final host. They additionally manipulate the nervous system of the snail so far that the snail performs an unusual behavior and moves towards very well exposed elevated areas, such as leaves of adjacent plants. Thus the probability to be eaten by birds is remarkably increased.
Host specificity on humans with side-hosts and coevolution with the ancestor line of Homo sapiens: skin mite Sarcoptes scabiei
An interesting example of a host specificity with numerous side-hosts and even an additional host-increase is the skin parasitic mite Sarcoptes scabiei (also named the „seven-year itch“). It was originally exclusively specific for Homo sapiens and accompanied mankind over its entire evolution (e. g. J. R. H. Andrew’s Acarologia, 1983). Systematical relatives of that mite species can only be found within the Great Apes. Originating from the recent Homo sapiens, S. scabiei conquered the human’s domestic animals, such as dogs or bovine animals within long-term periods, in which humans and their domestic animals had shared the same buildings or even rooms. Domestic animals may transfer the mite-parasite subsequently to wild animals. In case main host (humans) and side hosts (domestic animals, wild animals) can supply everything, which the parasite needs for its development without the necessity to leave its host specimen, one might speak about real hosts. In case side hosts cannot supply the necessary basic equipment, they represent either intermediate hosts or dead-end hosts. It can for example be discussed, whether dogs might in fact be dead-end hosts, as the skin disease can harm them under certain conditions to dead.
Host increase due to the globalisation and human economic interests: example honey bee parasite Varroa destructor (mite)
Another example of a former host specificity on a species‘ level with host increase is the mite Varroa destructor (Parasitiformes, Mesostigmata). It was originally specific for the Eastern honey bee Apis cerana. The mite could only switch over to the Western honey bee Apis mellifera due to a human influence: Men transferred A. mellifera for economic reasons to the natural habitats of A. cerana in Eastern Asia, were it got infected by the mite V. destructor. A subsequent transfer of the Western honeybee back home established the mite parasite in Western countries. As A. mellifera colonies are much more harmed by V. destructor than its original host, our honey bee must be considered as an intermediate case between a new host and a dead-end host. Human international traffic enabled this host-increase primarily, although there are areas between Afghanistan and Iraq, where both bee species coexist due to natural distribution. But there is an almost insurmountable (allopatric) desert border between the population of both species of about 360 to 600 kilometers, although there are evidences for bees rarely surmounting this border. Thus a natural mite transfer between closely related bee species might have happened additionally. Species of animals, plants, fungi or bacteria and even viruses, which successfully established new (additional) living spaces are named neobiota or alien species.
Mite Varroa destructor, Wikipedia: The original uploader was Tullius at German Wikipedia. / Public domain
Can viruses as non-living genome possessing lumps be subject of evolution and complex host – parasite relationships?
Can this high complexity of modes of parasite – host – relationships in living organisms also be found in virus – host – relationships, although viruses do not represent living organisms at all according to biological definitions? The answer is yes, because viruses do not only share a genome with living cells, but based on this genome even are subject to the mechanisms of evolution. And evolution was the most important factor in all the mentioned complex parasite – host – interactions.
Parasitism versus mutualism or harming the host or not harming the host
Two different life-strategies with similar mechanisms as organism – to – organism associations
Are there other organism – to – organism relationships, being subject to a similar complexity than found in parasites with their hosts? Yes, a superordinate term for other close associations between different organism species is mutualism. While parasites need to harm their hosts by using them as final living-sources, mutualists are considered to practice a more neutral host contact, which per theoretic definition means that nobody harms anybody. But the assumption of a neutrality is in fact an artificial construct, as in detail it can come out that some of these organism associations represent unrecognized parasite-relationships, while in other cases a benefit for both partners (symbiosis) or for one partner only might be discovered in future studies. At least so called mutualists share as a feature that harmfulness or benefit are not easily noticeable.
Phoresy: taking a ride on a taxi-host as example of mutualistic relationships
An example for a more neutral organism, at least not harming association is called phoresy. It is often performed by nematodes and mites. These tiny organisms take a ride on bigger animals in order to become carried from one habitat to another. This „taxi-association“ is considered being of advantage for the phoretic part and harmless for the carrier (in English also often named host). But there are seeming phoretic interactions known, which based on developing technical scientific standards could be identified as unusual cases of parasitism. An example is a phoretic instar of an astigmatid mite (Astigmata, Acariformes), which as all phoretic instars within this big mite clade has no functional mouth, but sucking structures to fix itself to its host. This specific mite species had evolved a mechanism for opening the host cuticle in order to incorporate blood of its host using these sucking organs. This is unlike the common use of homologous suckers in related mite taxa, where they (as far as known so far) only support the adherence.
Another interesting example of a phoretic mite is Histiostoma blomquisti (Histiostomatidae, Astigmata), which is specifically associated with the red imported fire ant (sometimes referred as RIFA) Solenopsis invicta, which worldwide appears as troublesome neozoon, again a result of human global traffic. I am the scientific describer of that mite, and my research about it’s biology and abundance in ant nests refers to populations in Louisiana (USA). An interesting aspect is that the ant is originally native to Southern America. We lack studies, whether the mite appears in the native habitats of the ant also as its specific cohabitant or whether it originally deals with a wider range of phoretic hosts. We do not even know, whether the mite is at all native to the same area, in which S. invicta had its natural distribution. On one hand, we hypothesise that, but there is also a theoretical option that the mite performed a subsequent host change in areas, for example in the Southern USA, where the ant was accidentally established via sandy ballast substrate of ships as neozoon. It is further more not known, whether the mite – ant – relationship is indeed neutral, at least with no noticeable harming features. I discovered (S. Wirth & J. C. Moser, Acarologia 2010) that mite deutonymphs (= phoretic instar) can attach to active nest queens in such extraordinary high numbers (hundreds of mite specimens) that mobility restrictions for the concerned queens were sometimes visible. On the other hand, my video documentations showed that even completely overcrowded queens could still freely move and, much more important: stayed reproductive. The purpose of the mites inside the fire ant nests is unknown. But generally, mites of the Histiostomatidae can appear as beneficial animals in ant nests. At least according to my findings about the mite Histiostoma bakeri, which is a phoretic associate of the leafcutter ant Atta texana in Southern USA. I discovered these mites improving the hygienic conditions inside specific nest chambers (detritus chambers) due to their fungi and bacteria feeding activities (Wirth & Moser, European Association of Acarologists proceedings, 2008).
I will in different chapters of this article repeatedly refer to examples with phoretic mites of the family Histiostomatidae (Astigmata, Acariformes). As mutualism and parasitism follow similar organism-host association patterns, I will in those chapters not each time mention again that examples with these mites do not concern parasitism, but mutualism. It is by the way no accident that both life-strategies share common features, as there are examples known, which indicate that one strategy can evolve out of the other.
Mite Histiostoma blomquisti Wirth & Moser, 2010 (Histiostomatidae, Astigmata, Acariformes) on queens of ant Solenopsis invicta, Pineville/ Louisiana, copyrights Stefan F. Wirth
Mutualism often used as neutral term for organism associations with unknown effect of both partners to each other.
The copepod (Crustacea) Ommatokoita elongata on Greenland and sleeper sharks
So called mutualistic associations can sometimes represent interactions of unknown benefits or damage regarding both of the associated partners. Another interesting example of such an association with a not yet understood status is the copepod Ommatokoita elongata (Crustacea), which was discovered as specific cohabitant on the Greenland shark (Somniosus microcephalus) and the pacific sleeper shark (Somniosus pacificus). Larvae of the crustacean in their copepodit stadium and adult females attach to the ocular globes of the shark, where they can cause visible tissue damages. They are thus considered being parasites, although alternating hypotheses assume a more neutral mutualistic copepod – shark – association, based on the sometimes high abundance of the crustacean on one shark specimen (B. Berland, Nature, 1961). There are even assumptions about a benefit contributed by the copepode to the sharks: reasearchers say that it might improve the shark’s hunting success by attracting suitable prey with bioluminescence signals.
Shark Somniosus pacificus, Wikipedia: National Oceanic and Atmospheric Administration / Public domain
Greenland shark with copepod Ommatokoita elongata, hardly visible, when the shark turns to show his right eye, Youtube: copyrights The Canadian Press, video by Ben Singer, footage Brynn Devine, Marine institute of Memorial University of Newfoundland
Human parasites with mutualistic features: the mites Demodex folliculorum and D. brevis
Can viruses be compared with some mites, nematodes or copepodes by performing mutualistic virus – host – relationships? A priori it must be stated that they are unable for a neutral relationship with another organism, as they need the destruction of living cells for their own persistence. But indeed there are viruses known, causing no known diseases and thus being named passenger viruses. But first, an example of an organismic example of parasitism without harmfulness will be presented: the mites Demodex folliculorum and Demodex brevis (Trombidiformes, Prostigmata), which appear as so named „face mites“ inside hair follicles of humans, preferring eyebrows and eyelashes, but also other hairy body parts. The abundance in humans is high and grows with a human age. According to Schaller, M. (2004), new born children are free of Demodex, while over 70 years old people are at almost 100 percent infested with the mites. The mite in fact is a parasite and feeds on sebum from the sebaceous glands. Incorporating needed human gland secretions must be named parasitism. Nevertheless mites under normal conditions cause no visible damages nor do they seem to harm their host noticeably.
So called passenger viruses as mutualists with a more or less neutral affect to their human hosts
Such a parasitic relationship might be comparable with so called passenger viruses, which do not harm noticeably, although they destroy living tissue as all viruses do. They can accompany more harmful viruses and even might harm the pathological success of the diseases, caused by these harmful viruses, and for example might slow the disease’s progression. An example is the GB virus C (GBV-C), which was before known as Hepatitis G virus. The virus is common in humans and shows no pathogenic damaging effect. According to an US-study, about 13 percent of probands, whose blood was examined, possessed antibodies against the virus. GBV-C is considered to slow the effects of an HIV disease by negatively effecting the replication of the HI-virus.
Host increase towards systematically not closer related new hosts
Example for a transfer within related host taxa in mites is the bark-beetle-clade within Histiostomatidae (Astigmata), an example for non related side hosts is the mite Histiostoma maritimum (Histiostomatidae, Astigmata)
Do side-hosts or intermediate hosts as results of host increases commonly need to be systematically close relatives of the main host? The answer is no, although parasites are usually better pre-adapted in infesting a host, which shares a maximum of common characters with the main host. Within the mite family Histiostomatidae, there exists a clade of mites being associated with a clade of beetles. I named it bark beetle-clade (e.g. Wirth, phd thesis, 2004). Mites and bark beetles performed a parallel evolution, which required host increases and host changes towards related hosts and subsequent evolutionary adaptations to harmonize with these new hosts, either to become specific for a new host or to deal with a range of host species.
But the transfer of a parasite to new hosts can also happen towards not closely related host species, representing a scenery being based on a common ecological context between main hosts and side hosts. The phoretic mite Histiostoma maritimum for example is host specific for at least two closely related beetle-species of genus Heterocerus (Heteroceridae). But the mite regularly also appears on predatory beetles of genera Elaphrus and Bembidion (Elaphrus cupreus and Bembidion dentellum, Carabidae) (S. Wirth, phd thesis 2004 and subsequent studies). These beetles partly share the same habitats with Heterocerus: sapropel around ponds, being exposed to sunlight and warmth. In my research about the mite H. maritimum, I hypothesised that the phoretic mite instar might switch over to Elaphrus and Bembidion, for example when these predators feed on adult Heterocerus beetles, larvae or cadavers. Although I could regularly find mites in lower abundances over years on the side hosts (collected in the Heterocerus sampling sites), it is unknown, whether the „switch-over“-scenario was a starting event in an evolutionary past to establish the mite to new additional hosts, where they would today survive more or less independently from the original Heterocerus source, or whether the mites regularly need to switch over in the above mentioned situations, and in consequence side hosts with no Heterocerus-contact would thus lack the mite. A possible support for the latter hypothesis are my laboratory findings about the preferred developmental habitat of the mite, which was cadavers of died Heterocerus beetles. In my experiments the mite remained on its Heterocerus– carrier until this died. Mites subsequently developed on the beetle’s cadavers, feeding there on bacteria and fungi (the phenomenon is named necromeny). Mites under laboratory conditions developed also seemingly successfully on E. cupreus– and B.dentellum-cadavers. But I could so far never continue these studies and don’t know, whether or how well mite colonies with having only cadavers of these two side-hosts available would reproduce compared to mites being reared in Heterocerus settings. In case of a strict substrate specialization for Heterocerus cadavers, the side hosts would be dead-end hosts, and permanent reinfections from the original host source would be required to explain the regular mite abundance in Elaphrus and Bembidion.
Histiostoma maritimum, a adult female with conspicuous copulation opening, b both adult genders in dorsal view, c, d copulation opening in dorsal and sideview, SEM, Berlin 2020/ ca. 2002, copyrights Stefan F. Wirth
Assumed transfer of virus SARS-CoV-2 from bat main hosts via a pangolin as intermediate host towards humans:
There is an ecological context between bats and pangolins
The new corona virus SARS-CoV-2 is assumed to be host specific to a group of animals and from there infesting another animal as intermediatehost, from which presumably humans were opened up as new host source. There are researchers interpreting us humans as an dead-end hosts, as unlike in bats human people can be harmed remarkably with the lung disease COVID-19 (corona virus disease 2019), triggered by SARS-CoV-2. As at least from a general statistical point of view a high majority of infested people shows no or only slight symptoms, thus it can up-to-date not be excluded that Homo sapiens is in order to become a fully potential side host, because all a parasite needs in order to „survive“ before all other requirements is the (statistically) surviving of its host.
There is evidence that bats (Chiroptera) represent the main host, thus representing the „natural virus reservoir“, while pangolins (Pholidota) presumably act as intermediate hosts. This main-host-to-intermediate host context is for example reported as putative scenario by Ye Z.-W et al. (Int Biol Sci, 2020), who stated that based on molecular features the bat Rhinolophus affinis (Rhinolophidae, Chiroptera) is hosting a virus most similar to SARS-CoV-2 differing from all other known corona viruses (Similarity 96.2 %, nucleotide homology). The pangolin species Manis javanica was identified to carry formerly unknown CoV genomes, being according to the same authors with 85-92 % similar to SARS-CoV-2 (nucleotide sequence homology).
Bat Rhinolophus affinis as known reservoir of a virus most similar to Sars-CoV-2. Wiki commons: Naturalis Biodiversity Center
Pangolins and Chiroptera (bats and megabats, this taxon subsequently sometimes refereed as „bats“) are systematically not closer related to each other. Pangolins (Pholidota) are considered to represent the sister taxon of the clade Carnivora. Chiroptera were reconstructed as sister taxon to the clade Euungulata (containing animals such as horses, cattle or whales). But both, Chiroptera and Pholidota, can be connected by an ecological context. Pangolins (Pholidota) are species, which are either adapted to live preferably on the ground, or to spent most of their time on trees. Both types are specialised ant and termite feeders, which use cavities on the ground or inside trees as hideaways. They additionally give birth to their offspring inside these burrows and subsequently use to stay there with their young for a while. Such cavities can accidentally be the same time aggregation and resting places for bats, excluding megabats, which use to rest during daytime on exposed areas on trees. Manis javanica has a semi-arboricol life-style, spending time in trees and on the ground. This pangolin uses different resting cavities, either subterranean burrows or tree cavities.
Chinese pangolin Manis pentadactyla, a ground living species, Wikipedia: nachbarnebenan / Public domain, Zoo Leipzig, Tou Feng
Pangolin Manis javanica as known host of a virus similar to virus SARS -CoV-2. Wikipedia: creative commons Piekfrosch / CC BY-SA
Chiroptera and Pangolins are in South Eastern counties often subject to hunting, as both for example play a role in the traditional Chinese medicine. Thus a virus transfer to humans via main host or via the putative intermediate host is assumed to have happened on animal markets (in the province Wuhan in China).
Which indications point to animal hosts as original source of virus SARS -CoV-2 ?
The scientists Andersen et. al (2020) explain there was no virus-engineering instead of a natural evolution
But which proofs exist that animal hosts sources such as Chiroptera and pangolins are involved in the transfer of the virus SARS -CoV-2 to humans? The lack of general knowledge is still fundament for conspiracy theories, such as an artificial creation of the new corona virus in laboratories with biological warfare purposes.
K.G. Andersen et al. („The proximal origin of SARS-CoV-2“, Nature Medicine, 2020) concluded based on their molecular research that the genetic template for specific spike proteins forming structures, which the virus body possesses on its outside for holding on and penetrating into the host cells, showed evidence for a natural evolution and not for an engineering. They argue with the strong efficiency of the spikes at binding human cells, which makes an engineering implausible and evolution based on natural selection highly probable. The authors additionally examined the overall molecular structure of the backbone of SARS-CoV-2. Backbone can be explained as the „skeleton spine“ of a macromolecule as a continuous row of covalent bond atoms. This overall backbone structure of the new corona virus is according to the authors similar to viruses, which were isolated from Chiroptera and pangolins and dissimilar to other corona viruses, which are already known to science.
Spikes (here in red) in Sars-CoV-2 hold on and penetrate into host cells, Wikipedia: CDC/ Alissa Eckert, MS; Dan Higgins, MAM / Public domain
Can a host increase happen more or less spontaneously with a subsequent enormous success (as for example in virus SARS-CoV-2)?
And: Can the complexity of adaptations to a main host decide for the option of a host increase?
An example for a tendency to spontaneous temporary host changes is mite Histiostoma piceae (Histiostomatidae, Astigmata)
Is it imaginable that a host change or a host increase happens spontaneously and subsequently having such a remarkable impact to the new host, as it is recently ongoing with the SARS-CoV-2 pandemic? Host specificity, host changes and parasitism or mutualism in general are result of evolution. The most common case of evolutionary changes in organisms or viruses is a slow process of stepwise modifications being based on mutations and natural selection.
But it needs also to be stated that as more complex the pattern of characters is (genome, morphology, behavior, function-morphology, reproduction biology etc.), which binds a parasite or mutualist to a specific host, as more evolutionary steps are necessary to perform a host change and as longer an exposure to mutation and selection would need to take place. However it is alternatively possible that a host specificity is only based on a few, but important features. Slighter ecological pressures focusing towards these features might then theoretically allow rather fast host changes.
As an example with a putatively reduced complexity of host adaptations I herewith introduce the phoretic mite Histiostoms piceae (Astigmata, Histiostomatidae), which I repeatedly studied and reared under laboratory conditions. The scientific describer of this species (Scheucher, 1957) discovered a strict host specificity to the bark beetle Ips typographus. According to my and her research, the mite has along the geographic distribution of that bark beetle a high abundance, beetles without the mite are rare. In 2016 I discovered H. piceae being additionally associated with Ips cembrae as a second regular host. I cembrae represents the sibling species of I. typographus (Wirth, Weis, Pernek, Sumarski List, 2016). Exceptions are smaller bark beetle species, which regularly burrow their galleries into those of I. typographus or I. cembrae. It is unknown, whether these small bark beetles as cohabitants of I. typographus carry the mite temporarily or regularly. But the former might be confirmed by the following interesting phenomenon in the mite H. piceae:
In case of very high numbers of mites inside bark beetle galleries and a relatively low numbers of corresponding Ips species, the phoretic instar of the mite attaches under natural field conditions all available arthropods inside or adjacent to the galleries of the main hosts, including bigger mite species, different beetle species or – as already mentioned – smaller bark beetle species (for example my studies in the area of the city Tyumen, Siberia, Russia, 2015-2016). This indiscriminateness for specific hosts under certain conditions might indicate that the substrate specificity of the mite H. piceae is more developed than the phoretic specificity for the host insect itself as a carrier . In such a case, I would generally expect that a host change or a host increase might faster happen in future evolutionary steps than in mite species, which are strictly choosy for their specific host carrier. In H. piceae the tolerance for a variety of carriers (unlike the specificity for substrate conditions) might in a future evolution even succeed as pre-adaptation, which under suitable circumstances might spontaneously allow a regular transfer to new hosts. A second important step towards a real host increase would require that the mite becomes able to stay permanently on its new host. In the H. piceae context the evolution of a tolerance for different substrate conditions might once become an important selective factor in may be opening up new permanent host-associations.
Temporary side hosts, as described in the above explained observations, would represent nothing then dead-end hosts, as they are unable to carry the phoretic mite to suitable habitats for its development. But under favorable circumstances, a former dead-end host might even become a new permanent host.
Histiostoma piceae, a adult female in side view, b in dorsal view, c mouthparts and digitis fixus, d adult male in dorsal view, e in ventral view, Berlin 2020/ ca. 2002, copyrights Stefan F. Wirth
Phoretic instar of Histiostoma piceae, ventral view, lightmicroscope with dig contrast, Tyumen (Siberia, Russia), 2016, copyrights Stefan F. Wirth
Two possible ways of virus transfer from bats to humans according to Andersen et al. (Nature Medicine, 2020)
Did the virus evolution towards the recent state happened prior to a first human infection, namely inside animal main host populations, or did it happen afterwards inside human populations?
As there is not yet much known about the presumed host specificity of the virus SARS-CoV-2, Andersen et al. (Nature Medicine, 2020) reconstructed based on their up-to-date knowledge two possible ways of a virus transfer from bats to humans and finally to the recent pandemic situation in the world:
The virus might have evolved its recent human-pathogenic features within the main host populations of bats. Natural selection must have been the corresponding major driving force. The relevant adaptations are represented by the above mentioned two molecular characters of the spike proteins in SARS-CoV-2 (receptor-binding domain for host cell binding and cleavage sites for an opening up of the virus). Under such circumstances the authors expect that the infection of humans could have happened with an immediate effect, leading at once into the pandemic situation of today. An intermediate host would in this option be not obligatory. A direct transfer from bats to humans might be imaginable.
The second option is based on findings that corona viruses in pangolins possess similar receptor-binding domains (RBD) as in the human SARS-CoV-2 version. Thus the authors reconstruct a version according to which a non or less pathogenic form of the new corona virus was via pangolins transferred to humans and circulated there for an unknown period of time. Even further possible intermediate hosts, such as ferrets or civets, are considered to have been involved in that scenario. During its time inside human populations the virus would have developed its recent features due to evolution and finally was able to be spread explosively between human populations on a pandemic level.
A higher probability for one of the two scenarios can according to the up-to-date knowledge not be assumed
I am not sure, whether the authors take under consideration with their second option that pangolins might even represent a main host and whether bats would not necessarily be involved in the animal-human transfer of the virus. But according to Ye Z.-W. et al. (Int Biol Sci, 2020) the context between bats, pangolins and humans was stated: „We cannot exclude the possibility that pangolin is one of the intermediate animal hosts of SARS-CoV-2“. But whether the pangolin is intermediate host or main host would at this point not effect the general conclusion of each of the two scenarios. The virus was either pre-adapted regarding efficient spike protein characters and then infested human populations rapidly or was transferred to humans via an animal host and subsequently evolved its key-features for a pandemic „success“ within human populations. Although the authors have up-to-date no indications allowing a preference for one of the scenarios, they point out that the potential of new SARS-CoV-2 outbreaks after the extinction of the recent human pandemic would be much higher in case of the scenario one, as the pathogenic virus would under these conditions survive in the animal main host populations.
I would as addition to scenario two suggest to test a modified hypothetic scenario, in which the non pathogenic ancestral version of the virus did not only circulate between human populations until it reached its pandemic key-features, but even circulated between humans and animal hosts forth and back for a longer time. This would according to my understanding of evolution improve the probability of a stepwise evolution of important key-features.
Special and unusual features of main hosts can improve the diversity within their parasites, important conditions for subsequent host changes: a very efficient immune system in bats pushes the evolution of their viruses
Chiroptera (bats and megabats) are not only known as putative main hosts for SARS-CoV-2, but also for Mers, Sars, Marburg and ebola viruses. Scientists did a research about the question, whether there are specific features existing, which explain, why Chiroptera are favorable hosts for viruses with a seemingly potential for epidemic and pandemic effects in human populations.
C. E. Brook et al. (eLife, 2020) discovered an unusual efficient immune system in Chiroptera, which they think protects these hosts from harmful diseases by their virus parasites. This bat immune system is considered being the evolutionary driving force for the variety of viruses and their relatively fast modifications, as they would need to compete with immune system responses by regularly evolving new adaptive features.
The authors discovered that the antiviral messenger substance interferone-alpha is released in most mammals as a response to the detection of viral genetic material inside body cells. Whereas they found Chiroptera releasing this messenger substance permanently. This would according to the scientists enhance the virus defense in bats and might explain that the above named viruses do not trigger noticeable diseases in their main host recervoir.
I would resume that such conditions might support the scenario one of Andersen et al. (Nature Medicine, 2020), according to which viral key features to infest humans had evolved prior inside the animal host populations. Regular new virus modifications as result of the competition between these viruses and their bat-host immune responses might support the randomness of the development of features, which as pre-adaptations could support a relatively fast host change. Even when I generally prefer scenarios of stepwise adaptations of organisms to new conditions, a higher probability of the availability of suitable pre-adaptations might at least accelerate evolutionary proceedings.
Longtime parasite – host – relationships, a dead-end for the parasite?
Are relationships between organisms over longer time periods of advantage or disadvantage for parasitic or mutualistic passengers? A longtime host specificity of a parasite (or mutualist) requires a strict specialisation, which means complex morphological, ecological and behavioral adaptations.
According to the acarologists P. B. Klimov & B. Oconnor (Systematic Biology, 2013) long-term specialisations could impede the flexibility of such organisms to react to environmental changes via evolutionary adjustments. Thus parasites with long-term relationships to the same hosts might be endangered to reach a dead-end. They would die out. A possible way out from such a disastrous end can be a re-evolution of the parasite back to its ancestral free living conditions, a situation prior to the evolution of its parasitic host specificity. But Dollo’s law states that a complex trait cannot re-evolve again. Thus long-term parasitism could according to the law not other than leading into a dead end. Nevertheless the authors could present an impressive example as proof to the contrary: based on their complex research about house dust mites, the acarologists reconstructed that these mites were originally parasites of warm blooded animals and subsequently evolved into free living associates of mammals, as which they are of medical relevance due to the remarkable allergic reactions in humans.
I think that the access of this paper does contain enough general biological aspects to ask, whether the dead-end scenario of long-term parasite relationships might also concern viruses, which don’t have an option for a free living existence, as they don’t live at all and are unable to perform independent strategies. At least might this long-term scenario support the findings of C. E. Brook et al. (eLife, 2020) that only unusual and regularly changing features of a long-term host might trigger regular corresponding responses by the parasite, another option to prevent a parasite from a dead-end due to a long-term host relation. This might explain, why certain viruses often parasite bats and successfully persist there, while other suitable hosts lack the very efficient immune system of bats and thus cannot host a specialized virus permanently. Regarding SARS-CoV-2 such theories might indicate that the virus would finally move towards dead-ends in humans and other host species, but might permanently survive in chiropterans. It’s a statement only being worth of consideration, in case of scenario one of Andersen et al. (Nature Medicine, 2020). And only in case, it would come out that the virus adapts well to humans, which would require a much reduced harmfulness, as parasites cannot survive by killing their hosts. In case of a dead-end host due to high mortality rates instead of a normal host increase, aspects of a long-term relationship with such a host don’t need to be discussed, as a shorter temporary outbreak and no beginning of a long-term relationship at all would result out of it. One needs additionally to consider that viruses as non living organic bodies with genome and with an unusual ability for fast modifications might often not fit into biological models based on living organisms.
House dust mite Dermatophagoides pteronyssinus. Wikipedia creative commons: Gilles San Martin from Namur, Belgium / CC BY-SA
Summary
Host specificity must be differed from generalism. Known host-parasite specializations include a complexity of strategies. And even different kinds of hosts must be named, such as main host, side-host, intermediate host or dead-end host. Evolutionary steps such as host increase, host change or temporary hosts can appear. Parasitism and mutualism differ from each other as life-strategies, but share common features as association between different organisms: host specificity follows similar rules, an indication that both life-modes can evolve out of each other. The human globalization sometimes supports the spreading of parasites or their hosts over the world, host changes or host increases can thus be performed including organisms, which would under normal conditions get no contact to each other.
Viruses do not represent living organisms, but protein lumps with a genome and depend on living host cells for their reproduction and „survival“. like in living organisms, also viruses underlay the mechanisms of natural selection and evolution. Viral parasite – host – relationships show general similarities with features in living organisms, including options for a host change or host increase, the use of intermediate hosts or a kind of mutualism (passenger viruses). There is evidence that the main host reservoir of SARS-CoV-2 are Chiroptera, while pangolins (and other mammals) might represent intermediate hosts. Humans are either dead-end hosts (preferred by most authors) or result of a successful host increase. Researchers could not yet decide, whether features to infest humans in a pandemic context evolved prior to the transfer to humans inside animal main host populations or whether a harmless version changed to humans and in their populations evolved its pandemic potential. A major drive motor for a long-term successful relationship with bats is the unusual immune system in chiropterans.
Copyrights Dr. Stefan F. Wirth (phd), all rights reserved, excluding photos labeled as creative common content from Wikipedia sources. Berlin, 2 April 2020
References:
J. R. H. Andrew’s (1983): the origin and evolution of host associations of Sarcoptes scabiei and the subfamily Sarcoptinae Murray. Acarologia XXIV, fasc. 1.
B. Berland (1961): Copepod Ommatokoita elongata (Grant) in the eyes of the Greenland Shark – a possible cause of mutual dependence. In: Nature, 191, S. 829–830. Cara E. Brook, M. Boots, K. Chandran, A. P. Dobson, C. Drosten, A. L. Graham, B. T. Grenfell, M. A. Müller, M. Ng, L-F. Wang, A. v. Leeuwen (2020): Accelerated viral dynamics in bat cell lines, with implications for zoonotic ermergence,eLife; 9:e48401.g W
Pavel B. Klimov, Barry OConnor, Is Permanent Parasitism Reversible? (2013): —Critical Evidence from Early Evolution of House Dust Mites, Systematic Biology, Volume 62, Issue 3, Pages 411–423.
Kristian G. Andersen, Andrew Rambaut, W. Ian Lipkin, Edward C. Holmes, Robert F. Garry (2020): The proximal origin of SARS-CoV-2. Nature Medicine. Martin Schaller: Demodex-Follikulitis. In: Gerd Plewig, Peter Kaudewitz, Christian A. Sander (Hrsg.): Fortschritte der praktischen Dermatologie und Venerologie 2004. Vorträge und Dia-Klinik der 19. Fortbildungswoche 2004. Fortbildungswoche für Praktische Dermatologie und Venerologie e.V. c/o Klinik und Poliklinik für Dermatologie und Allergologie LMU München in Verbindung mit dem Berufsverband der Deutschen Dermatologen e.V. (= Fortschritte der praktischen Dermatologie und Venerologie. 19). Springer Berlin, Berlin 2005, ISBN 3-540-21055-5, S. 273–276.
Wirth S. (2004): Phylogeny, biology and character transformations of the Histiostomatidae (Acari, Astigmata). phd thesis. Internet Publikation FU Berlin, http://www.diss.fu-berlin.de/2004/312.
Wirth, S. & Moser, J.C. (2008): Interactions of histiostomatid mites (Astigmata) and leafcutting ants. In: M. Bertrand, S. Kreiter, K.D. McCoy, A. Migeon, M. Navajas, M.-S. Tixier, L. Vial (Eds.), Integrative Acarology. Proceedings of the 6th Congress of the European Association of Acarologists: 378-384; EURAAC 2008, Montpellier, France.
Wirth S. & Moser J. C. (2010): Histiostoma blomquisti N. SP. (Acari: Histiostomatidae) A phoretic mite of the Red Imported Fire Ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Acarologia 50(3): 357-371.
Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY (2020): Zoonotic origins of human coronaviruses. Int J Biol Sci ; 16(10):1686-1697. doi:10.7150/ijbs.45472.
Zhang W., Chaloner K, Tillmann HL, Williams CF, Stapleton JT (2006): „Effect of Early and Late GB Virus C Viraemia on Survival of HIV-infected Individuals: A Meta-analysis“. HIV Med. 7 (3): 173–180.
Mites represent arachnids, which means that they share characters with much bigger organisms, such as spiders, skorpions or harvestmen. Their bodies consist of specialized bundles of segments, named tagmata. Two major tagmata are differed from each other in arachnids: prosoma, including legs and mouthparts, and opisthosoma, including for example the digestive and the reproductive systems.
Discussed diphyletic origin of mites
Mites are according to some acarological scientists eventually not longer just mites. The former two clades of mites, Parasitiformes and Acariformes, originally considered as sister taxa, were in some modern systematics reconstructed to be diphyletic. That would mean, there was no commor ancestor, from which only those two clades derived, the two major clades would be polyphyletic with no close relationship between them, each clade is assumed being closely related to different groups of arachnids (e.g. Psedoscorpions and Opiliones). Thus, when I talk about mites, I am talking about the clade Acariformes.
Mites of the Acariformes and body plan
In these Acariformes mites, the arachnid body construction plan was modified into three visible tagmata: gnathosoma (bearing chelicerae and pedipalps as mouthparts), proterosoma (bearing first two leg pairs) and hysterosoma (bearing last two leg pairs and opisthosoma organs).
Male (large morph) of mite Histiostoma feroniarum in dorsal view. Body division in gnathosoma, proterosoma and hysterostoma. Fixation : critical-point-dried, SEM photography, copyrights Stefan F. Wirth
Mouthparts
Let’s talk about mouthparts, as they are an important aspect of my systematic and my function.morphological studies. Originally the gnathosoma consists of a pair of scissor-shaped chelicerae to grasp the food particles and of a pair of leg-shaped pedipalps, which mostly have mechano-sensitive and chemo-sensitive functions. But because mites colonized almost all kinds of existing habitats on earth, they extensively were exposed to the mechanisms of evolution. Acariform mites show a high range of variability regarding their morphology and their life strategies.
Mouthparts of Sarcoptiformes
Within the clade Sarcoptiformes, consisting of oribatid mites, Endeostigmata (seemingly paraphyletic) and astigmatid mites, there evolved a tendency towards miniaturization. Mites of the Astigmata are usually much smaller than one mm. Correspondingly the cuticle became thinner and softer, perfect adaptations to a life inside very tiny micro habitats, but at the same time also a limitation, namely towards more or less moist habitats due to the lack of a well developed desiccation protection. They appear inside compost, rotting wood or mammal dung, being even there very specifically adapted into very defined micro climatic conditions. They live in a world of complete darkness, which is why light sensory organs are completely lost or reduced to vestigial structures.
Inside their habitats, astigmatid mites need to reproduce, to develop through different nymphal stages until adulthood and of course to feed. Astigmata are no fluid suckers, but feed on particles, such as bacteria, algae, fungi, thus many Astigmata taxa can be named microorganism feeders.
Life-strategy of mites of the (family) Histiostomatidae
Extinct bark beetle fpssil in amber (collection Hoffeins) with phoretic mite deutonymphs. Fixation with hexamethyldisilazane, stereomicroscopic photography, copyrights Stefan F. Wirth
One of the largest family within the Astigmata clade is the Histiostomatidae, which I use since many years as model for my scientific studies. These mites are scientifically interesting from different points of view. Their ecology is characterized by life styles, which correspond to the life cycle of insects and other arthropods, to which most species have a close association. Most important aspect of these interactions between mites and other arthropods, commonly insects, is a dispersal strategy named „phoresy“. Mites use their „partners“ as carriers from one habitat to another. These habitats can often be the nests of the corresponding arthropods/ insects.
Habitats, in which mites of the Histiostomatidae develop successfully need to be moist and need to contain a sufficiant amount of microorganisms as food source. It is the most conspicuous feature of these mites to possess remarkably modified mouthparts compared to the above described standard equipment of an acariform gnathosoma.
Mouthparts of the Histiostomatidae
Mite Histiostoma sp. (sapropel around ponds, female, Berlin) feeding from a substrate surface inside its original habitat. Videography in 4K, copyrights Stefan F. Wirth
The character conditions of the gnathosoma were one of the reasons, why I at the beginning of my phd thesis in 2000 decided to put my research focus on this mite family, being worldwide in major still unexplored.
The chelicera modified into a dagger-like structure being formed by the fixed part of the former scissor-like organ, named the digitus fixus. There is a variability of shapes of this digitus fius-chelicera-ending within the Histiostomatidae . It can appear „simple-dagger-like, simple formed with a hook-like ending or having cuticular dentations of specific numbers and sizes along the lower edge of the digitus fixus.
As typical for mites of the big clade Astigmata, the pedipalps are reduced in size and almost immovably ventrally and dorsally connected with each other. In Histiostomatidae, the third pedipalp article is additionally distinctly bent sidewards. Their front sides bear more or less complex arrangements of flexible membraneous structures, which can morphologically differ between taxa or even species, thus giving them a systematic relevance. I named these membrane-organs „palparmembrane“ following the nomenclature, introduced by R. Scheucher in 1957. These membranes can be devided into fringes or being lobe-sphaped and can cover the last pedipalp article dorsally and/or ventrally. My histological analysis from 2006 indicated that these membranes are shaped by the enditesof the pedipalpal coxae.
Complex mouthpart apparatus
Thus Histiostomatidae possess a bizarre mouthpart apparatus being unique within the Acariformes and representing an amount of characters, which from the phylogenetc point of view can be reconstructed to have evolved in the stem species of that family (so called apomorphies).
Mouthpart apparatus as multifunctional organ
Mite Histiostoma sp. (male left, female right) feeding from a substrate surface inside its original habitat. Fixation with hexamethyldisilazane, SEM photography, copyrights Stefan F. Wirth
This gnathosoma is a multifunctional organ with the main function to select specific microorganism particles out of their liquid environments. When observing a histiostomatid mite with a sufficient high magnification walking along on a smooth water agar surface, on which bacteria and fungi growth was stimulated before, then occasionally trails can be seen around the walking mite, indicating that the gnathosoma was hold mostly leaned downwards towards the ground, pushing the microorganism cover along in front of the mite’s body. I interpreted this as an accumulation of food in order to gain more nutrients all at once. In my early papers, I described this as the typical feeding behavior of histiostomatid mites with the membraneous appendages acting like rubber sliders in the meantime. But as newer analyses showed is that such observations do not describe the full equipment of possible applications of the mite’s complex filter-feeding apparatus.
Membraneous structures create an underpressure to incorporate food
Mite Histiostoma ruehmi mouthpart endings with palparmembrane in ventral view. Fixation with hexamethyldisilazane, SEM photography, copyrights Stefan F. Wirth
More recent experiments with a higher videographic resolution and more suitable light conditions than 10 years ago (through-light and up light or one of them depending on the setting) showed that the palpar membrane structures , which more or less surround the entire fore-part (anterior part) of the gnathosoma can act like suckers: When the mite presses its front end of the mouthparts to the underground, an underpressure can be formed based on these membraneous structures. This seemingly facilitates the incorporation of nutrients in that area.
Note from January 2020: In retrospect, I do not consider it sensible to superficially describe the feeding behavior using the palpar membrane at the edge. A precise videographic analysis of individual images exists and is currently being developed into a scientific paper.
Aspects of the histiostomatid feeding behavior, including using the membranous components at the anterior end of the mouthparts (pedipalps), can partly be seen in the video below.
Mite Histiostoma ruehmi and an undetermined species feeding from a smooth artificial substrate surface and performing an underpressure to incorporate food. Videography, copyrights Stefan F. Wirth
Scanning-electron-microscopic experiments
Mite Histiostoma cf feroniarum feeding in its original substrate, fixed with hexamethydisilazane, SEM
copyrights Stefan F. Wirth
Mite Bonomoia opuntiae feeding from the surface of a substrate mount inside its original habitat. Rounded particles might represent yeast bodies. Fixation with hexamethyldisilazane, SEM photography, copyrights Stefan F. Wirth
In my early postdoc-years, still at the FU Berlin, I performed experiments in order to fix mite activities inside their original substrates by filling such a mite-substrate-setting up with 1,1,1,3,3,3-hexamethyldisilazane and warming the corresponding small experimental dish, until the chemical was vaporized. I then sputtered the conserved setting with gold and studied the details on it via scanning-electron-microscopy. Occasionally, mites were shrinkled or deformed after this procedure, but sometimes they stayed in shape and did seemingly still remain in their last activity positions. I several times could take SEM photos, showing that (well visible only in adult mites due to their size) mite specimens can insert their (distal) chelicerae-endings into bigger heaps of substrate (obviously full of nutrients) and use the entire laterally bent pedipalpal articles, including the connected palparmembranes, to lean it against the substrate surface, either to stabilize the chelicerae movents or even to support the incorporation of nutrients again by forming a slight underpressure, or both.
Mite species Bonomoia opuntiae
Early observations during times of my phd-thesis on the mite Bonomoia opuntiae could show that the mouthpart apparatus of this terrestrial/semiaquatic mite works well also under water or inside a watery juce of decomposing cactus pieces. There even a filter function comparable with a fishing net was hypothesised, but so far was never studied in detail. The very distinct fringes along the palparmembrane lobes in this mite species might support this theory. I also studied the semiaquatic mite Sarraceniopus nipponensis feeding inside watery environments (normally the digestive fluids of Sarracenia pitchers), again never focussing in detail in how excactly the feeding mechanism works.
A putatively new species
The herewith presented video shows behaviors of a female of the putative new species Histiostoma sp. , which I discovered in beginning of 2019 in sapropel around ponds inside an old gravel pit area in the Berlin forest Grunewald. The footage is presented in slow motion. The question was about how motile the whole gnathosoma apparatus in a histiostomatid species can be and what kinds of movements occured. As the settings, which I in early years of my mite studies used for videographic studies, were simplyfied and thus unnatural (smooth agar surfaces), I thought it being necessary and important to capture behaviors in a complexly sculptured habitat, namely surfaces of decomposing potato pieces (on which most histiostomatid species use to develop well).
It was visible, based on the specimens of my video of this species, that histiostomatid mites can be able to lift up their entire gnathosomas on a sometimes even higher position than the levels of the rest of their bodies. Additionally the gnathosoma can be turned to the right and to the left. Up and down as well as sideward movements of the whole feeding apparatus were often performed and represented obviously flexible reactions of the mite to the surface structure of the substrate and to the availability of suitable nutrients. In this context I was also interested in details of the movements of the chelicera tips themselves.
Chelicera endings (digitus fixus)
Although they can be used dagger-like and be accurately inserted into muddy substrate mounts, chelicera tips will also appear in a very fragile and seemingly careful way, when palpating the surface of the substrate underneath. Such chelicera movements are visible in the footage of this video, presented in slow motion (about 25 percent of original speed) and in a digital magnification. I interpret this visible fragility caution of the chelicerae as one option to discover suitable food sources. Other important organs perceive the mite’s environment chemically, modified setae, namely the so called solenidia, which might additionally recognize profitable microorganism sources.
Mite Histiostoma feroniarum feeding from substrate mounts inside its original habitat (A-F). Rounded particles might represent yeast bodies. D = distal chelicera endings (digitus fixus), holding food particles, fixation with hexamethyldisilazane, SEM photography, copyrights Stefan F. Wirth
Gravel pit area „Im Jagen 86“ in Berlin as biotope
„Im Jagen 86“ is a former gravel pit area in the Berlin urban forest Grunewald. It today represents a dynamic biotope, consisting of different types of habitats: mud around ponds, sand dunes, dry grassland and forest. Since the early 2000th, its habitat composition partly changed remarkably. Out of several (smaller) ponds, only one bigger pond remained. All ponds originally were surrounded by sapropel, a habitat for different interesting organisms, such as beetles of Heterocerus, Elaphrus and Bembidion. The mite Histiostoma maritimum was commonly found phoreticaly on Heterocerus and Elaphrus. I additionally in those early 2000th described the new mite Histiostoma palustre from Hydrophilidae of Cercyon and Coelostoma, living inside the saporopel as well. Today only a few small areas with open sapropel exist. I so far did not look for Histiostoma maritimum again and don’t know, how common it still is. At least Heterocerus beetles are harder to find than in earlier years. I so far did not found Histiostoma palustre again.
Rearing conditions of a putatively new mite species
I collected new mud samples in March 2019 at different areas, but found developing histiostomatid mites in a sample from the edge between mud (sapropel) and mosses. It is a species I never found before there and which might represent a new species. Only females could be morphologically studied. Nymyphal stages (not deutonymphs) are only available as video footage. No males were found. I had added bigger potato pieces to stimulate microorganism growth as mite food into the soil sample (room temperature). After about one month, a few mites (females and proto/tritonymphs) developed on only one of these potato pieces and quickly died out shortly after my filming activities and after I could prepare a few females. I actually try to get them reared again. Due to the low temperatures in March, it is considered that these mites hibernate independently from insects in the substrate. No bigger insects could be found in the substrate, which might be the corresponding carriers. But different dipterans (e.g. Ceratopogonidae) developed, they had no mite deutonymphs after hatching in my sample.
Morphological reconstruction of females and important characters as well as behavioral observations
The females of Histiostoma sp. differ from other females, which I know, by the mosaic of the following characters: body conspicuously elongated with a distinctly big distance between hind ringorgans and anus, digitus fixus almost simple shaped, fringes or ridges on palparmembrane, 6 dorsal humps, unusually big copulation opening. Leg setation not yet studied. One pair of ventral setae hardly visible (not in the drawing). Nymphs were observed during burrowing activities (footage), females are may be also able to. Deutonymphs or males would be useful to decide, whether the species is new. Some species are only described by deutonymphs.
Berlin, March/ June 2019 All copyrights Stefan F. Wirth
Greater numbers of pupae from a nest of the myrmecine ant Myrmica rudinodis are attached by phoretic mites, which wait for these pupae to hatch. They would then attach the newly developed ants to be carried around and dispersed this way. They this way had already occupied their later ants before, namely during their pupal stage, one could call this phenomen „pupa-guarding“. In my samples, I discovered two species of mites performing this pupa guarding behavior. Most abundant were deutonymphs of the mite Forcellinia wasmanni (Astigmata). But also individuals of a mite species of the Gamasina were repeatedly discovered sitting on pupae, where they were hiding between head, ventrum and limbs of the pupa. They even seemed to defend their pupae, when they felt disturbed, e.g. by my filming activities.
Ant pupa guarding by mitees, looking for a carrier for dispersal
These pupa guarding-findings concerning this ant and with these corresponding mite species might be new to science (so far I didn’t found literature indications) and thus need to be studied closer in the future in order to understand the whole context of behaviors. In the footage, two types of pupae are visible, pupae of the winged alates and those of workers. Mites generally prefered both, but especially the deutonymphs of Forcellinia wasmanni seemed to appear more often on the pupae of later workers. Most pupae had at least one deutonymph attached, rarely, there were found up to four individuals. This is different to what could be found on older workers. They on their ventral side can have 4-6 deutonymphs. Many workers seem to be covered with the deutonymphs, but I didn’t check more workers until now, so I can’t say, how many were without mites. It is unknown, how deutonymphs come to the pupae, whether they simply leave older workers for the pupa-guarding or whether they were waiting in the soil for the pupae to arrive (due to the brood caring activitoes of the ants).
Mite-Life inside an ant nest. Copyrights Stefan F. Wirth 2015/18
Astigmatid mite with a strict relationship to ants
The mite Forcellinia wasmanni is known to be strictly associated with ants (e.g. Türk & Türk 1957). It is clear that attaching young female alates would secure the dispersial of the mite into a new ant nest. It is not clear, which function the transport via ant workers can have. But Türk & Türk (1957) mention that the free living instars of Forcellinia wasmanni would feed on dead ants. Such a kind of microhabitat for the development is not unique in astigmatid mites. Some species within the Astigmata are known to have such preferences for decaying cadavers, but are then feeding on microorganisms, which grow on these (insect) cadavers. Ant workers might be ideal to carry mite deutonymphs to new cadavers, where they would leave and develop. Ants generally have a very well developed hygienic behavior. This guarantees the mites to get access to cadavers regularly. I do not know any other video footage, showing living deutonymphs attached to their carriers on such a magnification level as visible in this film. The original footage of these deutonymphs is much longer.
Morphology and behavior of the dislersal-instar, the so called „deutonymph“
The function of the proterosoma (dorsal shield of the forebody) is acting as a flexible structure, protecting the mouthpart-area (non-functional in deutonymphs) and the fore-legs, but being very motile and being easily pushed backwards (under the following hyterosoma-shield), when the mite lifts up from the surface of the ant pupa. I cannot state much more concerning the second mite, found on pupae, which is a species of the Gamasina. I discovered this phenomenon only on three of my pupae. Ant nests represent complex communities of organisms, to which fungae, other insects, mites and nematodes can belong. The samples visible in this film were collected in July 2015 on the German island Usedom inside a forest area between the villages Zinnowitz and Karlshagen. The ant nest was quite small. An ant hill was not visible.
Complexity of life in ant nests
The complexity of life within ant nests is a result of evolution. I am an enemy of creationistic movements, including all modern faces of creationism. Creationism stimulates carelessness und illiteracy in the believing people.
Berlin August 2015/ December 2018, copyrights Stefan F. Wirth
Mites of the Acariformes vary in very different forms and life-strategies. One taxon of very tiny and soft-skinned mites is named Astigmata. Within them the familiy Histiostomatidae is especially rich of species, most of them surely not yet described or discovered.
Modyfied mouthparts and a specific mode of dispersal
These mites feed on microorganisms using a complex mouthpart-apparatus with multifunctional abilities. They can be found in habitats, which dry out quickly. When it’s getting too dry, a specific instar of the mites takes a ride on insects or other bigger arthropods for dispersal to a new and fresh habitat ( strategy called Phoresy).
Histiostoma sachsi is one of numerous (often closely related) long haired (in females) species. It was originally in 1957 described from cattle-dung. I found it in compost.
Long upper-setation in females and tactile camouflage (mimesis)
Adult females are characterized by a long setation on their uppersides. They use them to hold parts of the old nymphal cuticle and soil particles on their backs. This seems to be due to a strategy named mimesis or camouflage. It’s a tactile camouflage as an optical sense in this kind of microhabitats plays almost no role.
Normal and unusual copulation position, trial of an interspecific copulation
Males mate their females via a dorsal copulation opening and thus need to ride on them. In H. sachsi, that copulation opening is located very close to the hind-edge of the body. That way it is even despite of the camouflage cover accessible. It seems even slightly being elevated out of the body surface in order to surmount adjacent soil particles. This is an adaptation of this particular species. It might share such morphological characters only with very closely related (not yet described) species In other members of genus Histiostoma, the copulation opening is usually more centered related to the hind body.
The copulation position requires that males insert their aedeagus („penis“) into the copulation opening. They additionally use their legs to grasp into the females body. That kind of leg arrangement and thus the whole copulation position can differ from species to species.
This is why copulations between members of different species already fail, because the right copulation setting does not fit, nor does the shape of the aedeagous. Nevertheless the phenomenon of unsuccessful trials for interspecific copulations can sometimes be observed in laboratory cultures. Such a trial is also visible in this video, where a male of Histiostoma feroniarum (also appears in my compost samples regularly) tries to mate a female of H. sachsi. It cannot even almost get in a proper copulation position and seems to hold on to the dorsal camouflage cover of the female. it could only remain in a transverse position related to the female body and thus not get access to the copulation opening, normal would be a longitudinal position with the sameame orientation of female and male.
Adult mites of the family Histiostomatidae (Astigmata) and a „false“ copulation. Copyrights Stefan F. Wirth, Berlin December 2018. Please like my video also at Youtube, in case you like it.
Chemical communication and chemo-sensitive leg setation
Mites of the Astigmata communicate and find their general orientation due to chemo-sensitive setae, mostly on legs I and II, which are named solenidia. They are even on the magnification level of my footage well visible on the male’s legs. Although a direct body contact is not necessary for a innerspecific communication by chemically interpreting scents produced from mite glands, the observed male in my video repeatedly was seeking for intense body-contacts and obviously „observed“ his conspecific while doing so with its first two legs. This might have intensified the perception of pheromones.
It showed this behavior also, when passing by the „false copulation-pair“ described above. It additionally seemed to invest power in its leg movements as if it would try to remove the „competitor“ on the female, in this case even belonging to another species.
Competitive fights between males
That mites of the Histiostomatidae can use their strongly sclerotized first legs to fight under each other for an access to a female is known to me from my older observations about the species Histiostoma palustre and Histiostoma feroniarum.
Origin of the compost samples
The compost samples were collected in SW-Germany (Saarland in October 2018). The footage was recorded in December 2018 in Berlin.
My parents have a compost area in their backyards. I use it as reference habitat for two mite species of the family Histiostomatidae (Astigmata): Since I began my research in 2000, the compost regularly contained Histiostoma feroniarum with its typical male dimorphism. Since summer 2017 another species appears additionally regularly: Histiostoma sachsi. Both species do not appear under the same conditions. While H. feroniarum prefers fresher decaying material, H. sachsi on visibly older decomposed tissue. There mite be even more mites of the Histiostomatidae exist in this complex compost habitat, but under my laboratory conditions, only the two named species were so far successfully reared out of samles always again. Regarding the determination of H. sachsi on a species level, I was more careful in my comments to a former video (June 17), in which I named it Histiostoma cf. sachsi due to doubts about a correct identification. Meanwhile, also due to the morphology of the deutonymph, I determine „my“ compost mite as Histiostoma sachsi Scheucher, 1957. But it is still to emphasize that Scheucher described H. sachsi from cattle dung, not from compost. But generally, both habitats can sometimes share the same inhabitants.
Adult females carry their old cuticles and „dirt“ on their backs as tactile comouflage
Biologically conspicuous is darkish material, which especially adult females carry on their backs. Unlike males, females posses elongated setae on their backsides. These setae support the holding of material such as old cuticle and soil particles. In slide preparations, this cover usually appears amorphic and contains substrate from the mite’s environment. My video footage indicates that the basis of this cover is a retained old cuticle from the former nymphal instar . That this cannot easily be proven with the light microscope is due to the very soft and fine character of the cuticles in these mites. Remnants might become decomposed by microorganisms after a while.
Compost: the habitat of the mite Histiostoma sachsi Scheucher, 1957 (Acariformes, Astigmata, Histiostomatidae). Copyrights Stefan F. Wirth, please like my video also on youtube, in case you like it.
The phoretic dispersal instar, named deutonymph, in mites of the Astigmata controls its body position due to sticky leg endings and suckers on their undersides
Deutonymphs of H. sachsi represent one of my resent models to study mite-dispersal behavior. My research focus since a while concerns ultrastructure and function morphology of the deutonympal suckerplates and other structures to attach to insects for dispersal (this dispersal strategy is called phoresie). The anterior front-suckers on the suckerplate of the mite’s underside is extendable and very flexible, not only to find a suitable position on the insect carrier. When falling, the deutonymphs use it to lift their bodies up into a proper position again. Additionally they will try to get hold using „sticky“ lobe-shaped setae on the endings of legs I and II. Both is visible in my footage. The forelegs seem generally to make the first contact, when trying to get on a suitable carrier.
Deutonymphs of Histiostoma sachsi take a ride on other mites (Oribatida)
The suitable carrier of H. sachsi is unknown to me. Some astigmatid species have even a range of carrier-„hosts“. In my samples, deutonymphs at least attach to other mites, especially to mites of the Oribatida. This is in a very short scene visible in my video too.
Decomposing detritus (mostly dead algae debris) of marine organic material, laying onshore more or less close to the water line, containing seaweed or cadavers of aqatic animals, is named wrack. Wrack can appear under different kinds of ecological circumstances. In case, it would be in permanent contact with sea water, it might be mostly decomposed by marine organisms. But due to different reasons, wrack can land apart from a permanent sea water contact or even no sea water contact at all any more.
Here mostly terrestrial organisms with a tolerance for salty conditions would inhabit and decompose this piece of detritus. Sandhoppers (Cristacea) are known to switch between wracks of different conditions. They can for example carry mites or nematodes from one wrack habitat to another. Dead organic material generally always needs to be decomposed by living organisms, otherwise the whole ecological system would be harmed.
A specific kind of micro habitats
A small habitat, which would dry out after a while and thus exists only for a limited time, is called ephemere biochorion. Organisms being adapted to live there, must have adaptations, to leave their habitat by time to avoid desiccation. One option is a life strategy, which is named phoresy. Weaker organisms, unable to desperse themselves efficiently use other animals, such as winged insects, to take a ride on them to new habitats with suitable conditions for a development. Generally phoretic organisms can for example be represented by different groups of mites (e.g. Uropodida, Gamasina, Tarsenomidae, Scutacaridae, some Oribatida, Astigmata) and nematodes (Rhabditida).
Mites and nematodes
In case of wrack, decomposing close to the waterline, but without or only occasional water contact, Pellioditis marina (Nematoda, Rhabditida) is for example known as phoretic inhabitant along German coasts. Worldwide, crypitical sibling species of P. marina were meanwhile discovered. Depending on the exact situation of the wrack, also aquatic nematodes could appear there for a while. I couldn’t determine the nematode in my footage unfortunately at all, because I did not prepare slides of them enable a larger microscopic magnification. Phoretic mites can be associated with sand-hoppers (Amphipoda, Crustacea) and thus appear in wrack. Mites of the Histiostomatidae (Astigmata) were for example discovered in such a context by some researchers.
Mites of the Ameronothridae (Oribatida), sand-hoppers and dipterans
I so far never found them randomly, but also didn’t explicitely seek for histiostomatid species until now. My sample did not contain any Astigmata or I at least didn’t find them. Common inhabitants of decomposing wrack are oribatid mites of the Ameronothridae. This taxon with a worldwide distribution is charaterized by specific adaptations to deal as terrestrial organisms with (partly extreme) salty marine conditions. They are mostly algae feeders. Some species are known to appear in wrack. The sample, which I collected in context of the so called „Geo Tag der Natur 2018“ (Geo (journal) day of nature) in Norddeich Mole (East Frisian coast of Germany) contained many specimens (ca. 40, sample size of about 20×20 cm) of the Ameronothridae-species Ameronothrus sp.. My footage shows only one living specimen, as all had died until I began my filming activities.
Inhabitants of decomposing algae tissue along a beach at German North Sea, all copyrights Stefan F. Wirth
But I preserved several dead specimens for scientifc purposes. Ameronothridae might, according to literature, use phoresy via birds, but also might disperse themselves over smaller distances, due to their well developed cuticle, protecting against desiccation, and their rather fast locomotion abilities. Larvae of different species of flies (Diptera) developed inside my sample and hatched under my laboratory conditions after about two weeks. They intensively contributed to a fast decomposition of that organic marine tissue. Sand-hoppers were by the way not found at all.
Bacteria and protozoans
Bacteria are most important decomposers. But the function of protozoans (here e.g. Ciliata) in regard to the process of wrack degradation, which could still be isolated alive after about two weeks of decomposition, is unknown to me. My sample was found almost on top of a dike, meters away from the highest tide in that area and consisted mostly of the seaweed Fucus vesiculosus.It also contained sea gull feathers.
Berlin/ Norddeich Mole June/August/November 2018 Copyrights Stefan F. Wirth
Stefan Friedrich Wirth is a freelance German biologist, zoologist, evolutionary biologist and acarologist, living in Berlin.
– born in 1972 in the South-West of Germany.
– studies at the FU (Free University) Berlin 1994-2000
– phd thesis at the FU Berlin 2000-2004
– since 2004 research in the fields of systematics, evolution und ecology of mites (Histiostomatidae, Astigmata, Acari) in cooperation with different international scientific institutions and videografie/ macro-Videography as documentary contributions, for example to the „arte“-channel documentaries „Voyage sous nos pieds“ by the French director Vincent Amouroux.
selected publications:
Wirth, S. (2003): Das Stammartmuster der Histiostomatidae (Acari) und Beschreibung der durch zwei Männchen-Typen charakterisierten Histiostoma palustre n. sp.. Acarologia 42, 3: 257-270.
Wirth, S. (2004): Phylogeny, biology and character transformations of the Histiostomatidae (Acari, Astigmata). Promotionsarbeit. Internet Publikation, URL:http://www.diss.fu-berlin.de/2004/312.
Wirth, S. (2004): Phylogeny, Morphology and habitats of the Histiostomatidae (Astigmata). Proceedings of the V Symposium of the European Association of Acarologists. Phytophaga, XIV: 389-407.
Wirth, S. (2005): Description of a new species Bonomoia opuntiae (Histiostomatidae, Astigmata) with observations on the function of its eyes. Acarologia, vol. 45, no 4: 303-319. (URL:http://cat.inist.fr/?aModele=afficheN&cpsidt=18276055)
Wirth, S. (2005): Transformations of copulation structures and observations on the male polyphenism in the phylogeny of the Histiostomatidae. Internat. J. Acarol., Vol. 31, No. 2: 91-100.
Wirth, S. (2006): Development of the prelarva and larval behavior to open the eggshell in the Histiostomatidae (Astigmata). Abh. Ber. Naturkundemus. Görlitz 78,1: 93-104.
Wirth, S. (2007): Phylogeny and characteristic transformations of the Histiostomatidae. In: J.B. Morales-Malacara, V. Behan-Pelletier, E. Ueckermann, T.M. Pérez, E.G. Estrada-Venegas and M. Badii (Eds.), Acarology XI. Proceedings of the XI International Congress of Acarology: 607-615, México.
Wirth, S. & Moser, J.C. (2008): Interactions of histiostomatid mites (Astigmata) and leafcutting ants. In: M. Bertrand, S. Kreiter, K.D. McCoy, A. Migeon, M. Navajas, M.-S. Tixier, L. Vial (Eds.), Integrative Acarology. Proceedings of the 6th Congress of the European Association of Acarologists: 378-384; EURAAC 2008, Montpellier, France.
Wirth, S. (2010): Food competition and feeding behaviour and its implications for the phylogeny of the Histiostomatidae (Astigmata). – In: Sabelis, M. W. & Bruin, J. (eds.). Trends in Acarology: 37-40.
Wirth S. & Moser J. C. (2010): Histiostoma blomquisti N. SP. (Acari: Histiostomatidae) A phoretic mite of the Red Imported Fire Ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Acarologia 50(3): 357-371.
Dunlop1 J. A., Wirth1 S., Penney2 D., McNeil3 A., Bradley3R.S.,Withers3 P. J.,Preziosi2 R. F. (2011): A tiny phoretic mite deutonymph in Baltic amber recovered by X-ray computed tomography. Biology letters doi:10.1098/rsbl.2011.0923.
Krüger J. & Wirth S. (2011): Life cycle of Sarraceniopus nipponensis (Histiostomatidae: Astigmata) from the fluid-filled pitchers of Sarracenia alata (Sarraceniaceae). Acarologia 51(2): 259-267.
Koller L., Wirth S. and Raspotnig G. (2012): Geranial-rich oil gland secretions: a common phenomenon in the Histiostomatidae (Acari, Astigmata)? International journal of Acarology 38(5-38): 420-426.
Pernek M.1,2, Wirth S.3, Blomquist S. R.4, Avtzis D. N.5, Moser J. C.4 (2012): New associations of phoretic mites on Pityokteines curvidens (Coleoptera, Curculionidae, Scolytinae). Central European Journal of Biology. Volume 7, Issue 1: 63-68.
Pernek M. (1), NovakAgbaba S.(1), Lackovic N. (1), Dod(1) N., Lukic I. (2), Wirth S. (3) (2012): The role of biotic factors on pine (Pinus spp.) decline in north dalmatia (croat: uloga biotičkih čimbenika u sušenjuborova (Pinus spp.) na područjusjeverne dalmacije). Šumarski list, 5–6, cxxxvi: 343–354.
WirthS. (1), Pernek M. (2) (2012): First record of the miteHistiostoma ulmiin silver fir and indication of a possible phoretic dispersal by the longhorn beetleAcanthocinus reticulates. Šumarski list, 11–12, CXXXVI: 597–603.
WirthS. & Garonna A. P. (2015): Histiostoma ovalis (Histiostomatidae, Acari) associated with Ips sexdentatus (Scolytinae, Curculionidae, Coleoptera): ecology and mite redescription on the basis of formerly unknown adults and nymphs . International Journal of Acarology DOI: 10.1080/01647954.2015.1050062
WIRTH S., WEIS O., PERNEK M. (2016): A comparison of phoretic mites associated with bark beetles Ips typographus and Ips cembrae from Central Croatia. Šumarski list.
WIRTH S. (2016): Description of developmental instars of Bonomoia sibirica n. sp. (Astigmata: Histiostomatidae) with ecological observations and phylogenetic conclusions. Acarina, December issue.
WIRTH S. F. (2022): Specific phoretic mites as microclimate originators in special ephemeral soil habitats as presumed co-creators of nutrient-rich soil areas. Poster publication to Global Symposium on Soils for Nutrition, 26/07/2022 – 29/07/2022, by FAO (Food and Agriculture Organization of the United Nations), poster 167.