biologe

Just another WordPress.com site

Tag: Astigmata

Mite Histiostoma maritimum

The mite Histiostoma maritimum Oudemans 1914 is a member of the mite family Histiostomatidae (Astigmata, Acariformes). Oudemans discovered the mite based on its deutonymph only from a Dutch island. The German acarologist R. Scheucher found the species in 1957 in mud at the riverside of Regnitz and for the first time could rear H. maritimum and was able to redescribe it by its adult stages, especially females look morphologically conspicuous due to a sclerotized cuticula shield around its copulation opening. She reared her specimens on potatoes, mud and bran, but describes that her cultures did not grow well.

Phoretic carrieres (hosts) are beetles of genus Heterocerus, some carabids and according her findings also rarely some staphylinids.

I discovered H. maritimum between 2000 and 2004 repeatedly in sapropel around ponds in an old gravel pit area in Berlin, forest Grunewald, named „im Jagen 86“. They were mainly attached to the beetles Heterocerus fenestratus and Heterocerus fusculus, but could regularly also be found on the carabids Elaphrus cupreus and Bembidion sp.. I could several times rear the mites, like Scheucher hardly on potatoes, but quite well on cadavers of their carriers. I thus assumed a so called necromenic life-strategy for H. maritium. This means that a phoretic stage ascends a carrier, but never leaves, instead it awaits the carrier’s natural dead to develop on its cadaver (published in my phd thesis, online, 2004).

I never before published the full set of SEM photos from these former times at the beginning of my research carrier (except of my article about host specificity). In this explicite photo publication here on my homepage, I herewith publish SEM-photographs, objects sputtered with gold, which seemingly are still unique to science.

I do not know about any subsequent research on this mite worldwide. Reason is that modern science cannot be justified by gaining knowledge. In the past decades a good reason to get research funded, today not applied enough for any support. This is why I was forced to focus on bark beetle and ant nest inhabiting mites only within the last 10 years.

 

 

Adults of Histiostoma maritimum: A left male, right female, B, C, copulation opening, D dorsal view to female with mouthparts and copulation opening

 

 

Systematics: H. maritimum shares morphological characters of deutonymph (setation, apodemes) and adults (mouthpart details, shape of Digitus fixus) with species like Histiostoma feroniarum, H. insulare, H. litorale, H. palustre, H. polypori, H. myrmicarum. This might indicate a separate clade, but according to the old findings in my phd thesis, also a paraphyletic grouping including these species is thinkable.

 

Copyrights Stefan F. Wirth, 10 June 2020

 

 

Host specificy, host change and intermediate hosts in different organisms – with special reference to viruses and Sars-CoV-2

We recently read a lot about the pandemic consequences of infections with the new corona virus Sars-CoV-2, most are medical issues, hygienic advises and information about political reactions in different countries worldwide. But there is not much known about the biological host reservoir, putative intermediate hosts and how the human infections might be explained. It is a normal lack of information, because the scientific research about topics, being generally new to science, is time costing, especially, when life strategies and the population dynamics of organisms a concerned. Organisms? Viruses are per definitionem not considered organisms, because they lack important aspects, which characterize real life: they cannot reproduce on their own power, they do not have an own metabolism, no ingestion, no excretion. But they are organic and show traces of life by possessing a genome, which might indicate that they evolved from living cells. Viruses represent a diverse group of protein bodies containing nucleic acid, either DNA or RNA.

SARS-CoV-2_without_background

New corona virus Sars-CoV-2, Wikipedia: CDC/ Alissa Eckert, MS; Dan Higgins, MAM / Public domain

Viruses in general, host specificity, host increase, host change

For reproduction viruses depend on living host cells, which they reprogram by inserting their virus genome into the cell’s genome in order to stimulate the forming of a number of virus copies, all that happening on cost of the host cell’s life. Thus viruses need to be named parasites as they harm their hosts to their own advantage. Different groups of viruses attack different kinds of cells using in detail different methods to enslave their host cells. There are plant viruses, viruses associated with bacteria (named bacteriophages) and animalistic viruses. They all show characters, which are typical for parasite – host – relationships. Parasitic partners of any kind of host – parasite – relationship can be exclusively associated with one host species only (host specificity) or a limited group of systematically closely related hosts, while others can have a wider range of different host species. The latter generally might have evolved out of the former, although also the opposite direction is thinkable. When former host-specific parasites make themselves one or even several further hosts accessible, then this phenomenon is named host-increase (Wirtserweiterung). In case an new host was infested as permanent host, while the former host is given up, then a so called host change (Wirtswechsel) happened. The same term is also used in a different context, namely when a parasite requires in its development a change between different hosts.

Host specificity: A parasite (or an organism with similar life-strategy) is associated with one host only, which requires a specialization and a competition between host evolution and parasite evolution (coevolution). This strategy needs to be separated from generalism, which means that a parasite has a very wide range of not related regular main hosts. Host specificity is more common than generalism. But this also depends on definitions. I herewith define the association with one main host species only as host specificity. But I furthermore consider host specificity also given, when parasite-host relations are specific on a higher taxonomic level, for example, when certain closely related genera of parasites are specialized for certain closely related genera of hosts. This part of my definition has variable borders. In the chapter after next, I describe the parasitic case of the trematode Leucochloridium paradoxum, whose main hosts are represented by different systematically not closer related bird species. A host specificy on the level of birds in general (Aves), then present in only some species with similar food preferences might already need to be named a limited generalism.

Obligatory host change in ticks and lifstyle-change in water mites

Some parasites need several hosts to be enabled to finish their life-cycles. This is another context, in which the German term „Wirtswechsel“ (host change) is used. In that kind of parasite – host – association, the host change is often obligatory, meaning that the parasite cannot survive in the absence of one of the required hosts. The castor bean tick Ixodes ricinus represents a parasite, which needs a host change to successfully go through its full development until adulthood, but there is a wider range of suitable hosts, as intermediate host and as final host. Thus the tick is a generalist with obligatory host change. Water mites (Hydrachnidia) are parasitic as first nymphs (juvenile instar, usually named „larva“) and predators as older nymphs and adults. A host specificity of „larvae“ can appear, but a wider range of host species is common. These mites perform a life style change during their development.

Intermediate host, for example in the parasitic flatworm Leucochloridium paradoxum

An example for a parasite, obligatory requiring a specific intermediate host, is the flatworm Leucochloridium paradoxum („green-banded broodsac“, Trematoda, Platyhelmintes), whose larvae (miracidium) need to infest snails of the genus Succinea. This trematode parasite is host specific for a genus of snails, while there is no specificity for their main hosts. They parasite birds, but infest different bird species, which are not closer related to each other, such as finches, the crow family Corvidae or woodpeckers. Although there is a main host specificity on the very high taxonomic level of Aves, the use of the term (limited) generalism might in this case even be appropriate. Inside the smail’s midgut gland, miracidia (larvae) modify into another larva-form, named cercaria, which invade the liver, where they form so called sporocysts, sac-shaped muscular tubes, which grow through the entire snail host until they reach the snail’s tentacles, which they fill up with their tube-shaped bodies entirely. Lastly the snail is unable to retract her swollen organs. The snail tentacles are now well visible as conspicuous greenish stripes, pulsating permanently. The sporocysts as larval stage of this trematode parasite do even more than only increasing the visibility of the snail for bird predators, which represent the worm’s final host. They additionally manipulate the nervous system of the snail so far that the snail performs an unusual behavior and moves towards very well exposed elevated areas, such as leaves of adjacent plants. Thus the probability to be eaten by birds is remarkably increased.

683px-Succinea_mit_Leucocholoridium

Parasite Leucochloridium paradoxum, sporocysts inside the tentacles of a snail of genus Succinea, Wikipedia: Thomas Hahmann / CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)

Host specificity on humans with side-hosts and coevolution with the ancestor line of Homo sapiens: skin mite Sarcoptes scabiei

An interesting example of a host specificity with numerous side-hosts and even an additional host-increase is the skin parasitic mite Sarcoptes scabiei (also named the „seven-year itch“). It was originally exclusively specific for Homo sapiens and accompanied mankind over its entire evolution (e. g. J. R. H. Andrew’s Acarologia, 1983). Systematical relatives of that mite species can only be found within the Great Apes. Originating from the recent Homo sapiens, S. scabiei conquered the human’s domestic animals, such as dogs or bovine animals within long-term periods, in which humans and their domestic animals had shared the same buildings or even rooms. Domestic animals may transfer the mite-parasite subsequently to wild animals. In case main host (humans) and side hosts (domestic animals, wild animals) can supply everything, which the parasite needs for its development without the necessity to leave its host specimen, one might speak about real hosts. In case side hosts cannot supply the necessary basic equipment, they represent either intermediate hosts or dead-end hosts. It can for example be discussed, whether dogs might in fact be dead-end hosts, as the skin disease can harm them under certain conditions to dead.

523px-Sarcoptes_scabei_2

Mite Sarcoptes scabiei (Astigmata, Acariformes), Wikipedia: Kalumet / CC BY-SA (http://creativecommons.org/licenses/by-sa/3.0/)

Host increase due to the globalisation and human economic interests: example honey bee parasite Varroa destructor (mite)

Another example of a former host specificity on a species‘ level with host increase is the mite Varroa destructor (Parasitiformes, Mesostigmata). It was originally specific for the Eastern honey bee Apis cerana. The mite could only switch over to the Western honey bee Apis mellifera due to a human influence: Men transferred A. mellifera for economic reasons to the natural habitats of A. cerana in Eastern Asia, were it got infected by the mite V. destructor. A subsequent transfer of the Western honeybee back home established the mite parasite in Western countries. As A. mellifera colonies are much more harmed by V. destructor than its original host, our honey bee must be considered as an intermediate case between a new host and a dead-end host. Human international traffic enabled this host-increase primarily, although there are areas between Afghanistan and Iraq, where both bee species coexist due to natural distribution. But there is an almost insurmountable (allopatric) desert border between the population of both species of about 360 to 600 kilometers, although there are evidences for bees rarely surmounting this border. Thus a natural mite transfer between closely related bee species might have happened additionally. Species of animals, plants, fungi or bacteria and even viruses, which successfully established new (additional) living spaces are named neobiota or alien species.

Varroamilbe

Mite Varroa destructor, Wikipedia: The original uploader was Tullius at German Wikipedia. / Public domain

Can viruses as non-living genome possessing lumps be subject of evolution and complex host – parasite relationships?

Can this high complexity of modes of parasite – host – relationships in living organisms also be found in virus – host – relationships, although viruses do not represent living organisms at all according to biological definitions? The answer is yes, because viruses do not only share a genome with living cells, but based on this genome even are subject to the mechanisms of evolution. And evolution was the most important factor in all the mentioned complex parasite – host – interactions.

Parasitism versus mutualism or harming the host or not harming the host

Two different life-strategies with similar mechanisms as organism – to – organism associations

Are there other organism – to – organism relationships, being subject to a similar complexity than found in parasites with their hosts? Yes, a superordinate term for other close associations between different organism species is mutualism. While parasites need to harm their hosts by using them as final living-sources, mutualists are considered to practice a more neutral host contact, which per theoretic definition means that nobody harms anybody. But the assumption of a neutrality is in fact an artificial construct, as in detail it can come out that some of these organism associations represent unrecognized parasite-relationships, while in other cases a benefit for both partners (symbiosis) or for one partner only might be discovered in future studies. At least so called mutualists share as a feature that harmfulness or benefit are not easily noticeable.

Phoresy: taking a ride on a taxi-host as example of mutualistic relationships

An example for a more neutral organism, at least not harming association is called phoresy. It is often performed by nematodes and mites. These tiny organisms take a ride on bigger animals in order to become carried from one habitat to another. This „taxi-association“ is considered being of advantage for the phoretic part and harmless for the carrier (in English also often named host). But there are seeming phoretic interactions known, which based on developing technical scientific standards could be identified as unusual cases of parasitism. An example is a phoretic instar of an astigmatid mite (Astigmata, Acariformes), which as all phoretic instars within this big mite clade has no functional mouth, but sucking structures to fix itself to its host. This specific mite species had evolved a mechanism for opening the host cuticle in order to incorporate blood of its host using these sucking organs. This is unlike the common use of homologous suckers in related mite taxa, where they (as far as known so far) only support the adherence.

Another interesting example of a phoretic mite is Histiostoma blomquisti (Histiostomatidae, Astigmata), which is specifically associated with the red imported fire ant (sometimes referred as RIFA) Solenopsis invicta, which worldwide appears as troublesome neozoon, again a result of human global traffic. I am the scientific describer of that mite, and my research about it’s biology and abundance in ant nests refers to populations in Louisiana (USA). An interesting aspect is that the ant is originally native to Southern America. We lack studies, whether the mite appears in the native habitats of the ant also as its specific cohabitant or whether it originally deals with a wider range of phoretic hosts. We do not even know, whether the mite is at all native to the same area, in which S. invicta had its natural distribution. On one hand, we hypothesise that, but there is also a theoretical option that the mite performed a subsequent host change in areas, for example in the Southern USA, where the ant was accidentally established via sandy ballast substrate of ships as neozoon. It is further more not known, whether the mite – ant – relationship is indeed neutral, at least with no noticeable harming features. I discovered (S. Wirth & J. C. Moser, Acarologia 2010) that mite deutonymphs (= phoretic instar) can attach to active nest queens in such extraordinary high numbers (hundreds of mite specimens) that mobility restrictions for the concerned queens were sometimes visible. On the other hand, my video documentations showed that even completely overcrowded queens could still freely move and, much more important: stayed reproductive. The purpose of the mites inside the fire ant nests is unknown. But generally, mites of the Histiostomatidae can appear as beneficial animals in ant nests. At least according to my findings about the mite Histiostoma bakeri, which is a phoretic associate of the leafcutter ant Atta texana in Southern USA. I discovered these mites improving the hygienic conditions inside specific nest chambers (detritus chambers) due to their fungi and bacteria feeding activities (Wirth & Moser, European Association of Acarologists proceedings, 2008).

I will in different chapters of this article repeatedly refer to examples with phoretic mites of the family Histiostomatidae (Astigmata, Acariformes). As mutualism and parasitism follow similar organism-host association patterns, I will in those chapters not each time mention again that examples with these mites do not concern parasitism, but mutualism. It is by the way no accident that both life-strategies share common features, as there are examples known, which indicate that one strategy can evolve out of the other.

Mite Histiostoma blomquisti Wirth & Moser, 2010 (Histiostomatidae, Astigmata, Acariformes) on queens of ant Solenopsis invicta, Pineville/ Louisiana, copyrights Stefan F. Wirth

Mutualism often used as neutral term for organism associations with unknown effect of both partners to each other.

The copepod (Crustacea) Ommatokoita elongata on Greenland and sleeper sharks

So called mutualistic associations can sometimes represent interactions of unknown benefits or damage regarding both of the associated partners. Another interesting example of such an association with a not yet understood status is the copepod Ommatokoita elongata (Crustacea), which was discovered as specific cohabitant on the Greenland shark (Somniosus microcephalus) and the pacific sleeper shark (Somniosus pacificus). Larvae of the crustacean in their copepodit stadium and adult females attach to the ocular globes of the shark, where they can cause visible tissue damages. They are thus considered being parasites, although alternating hypotheses assume a more neutral mutualistic copepod – shark – association, based on the sometimes high abundance of the crustacean on one shark specimen (B. Berland, Nature, 1961). There are even assumptions about a benefit contributed by the copepode to the sharks: reasearchers say that it might improve the shark’s hunting success by attracting suitable prey with bioluminescence signals.

800px-Pacific_sleeper_shark

Shark Somniosus pacificus, Wikipedia: National Oceanic and Atmospheric Administration / Public domain

Greenland shark with copepod Ommatokoita elongata, hardly visible, when the shark turns to show his right eye, Youtube: copyrights The Canadian Press, video by Ben Singer, footage Brynn Devine, Marine institute of Memorial University of Newfoundland

Human parasites with mutualistic features: the mites Demodex folliculorum and D. brevis

Can viruses be compared with some mites, nematodes or copepodes by performing mutualistic virus – host – relationships? A priori it must be stated that they are unable for a neutral relationship with another organism, as they need the destruction of living cells for their own persistence. But indeed there are viruses known, causing no known diseases and thus being named passenger viruses. But first, an example of an organismic example of parasitism without harmfulness will be presented: the mites Demodex folliculorum and Demodex brevis (Trombidiformes, Prostigmata), which appear as so named „face mites“ inside hair follicles of humans, preferring eyebrows and eyelashes, but also other hairy body parts. The abundance in humans is high and grows with a human age. According to Schaller, M. (2004), new born children are free of Demodex, while over 70 years old people are at almost 100 percent infested with the mites. The mite in fact is a parasite and feeds on sebum from the sebaceous glands. Incorporating needed human gland secretions must be named parasitism. Nevertheless mites under normal conditions cause no visible damages nor do they seem to harm their host noticeably.

Demodex

Mite Demodex folliculorum, Wikipedia: Information |Description=Demodex folliculorum |Source|Date=2009-09-08 08:34 (UTC) |Author=: http://www.legart.ru/demodex

So called passenger viruses as mutualists with a more or less neutral affect to their human hosts

Such a parasitic relationship might be comparable with so called passenger viruses, which do not harm noticeably, although they destroy living tissue as all viruses do. They can accompany more harmful viruses and even might harm the pathological success of the diseases, caused by these harmful viruses, and for example might slow the disease’s progression. An example is the GB virus C (GBV-C), which was before known as Hepatitis G virus. The virus is common in humans and shows no pathogenic damaging effect. According to an US-study, about 13 percent of probands, whose blood was examined, possessed antibodies against the virus. GBV-C is considered to slow the effects of an HIV disease by negatively effecting the replication of the HI-virus.

Host increase towards systematically not closer related new hosts

Example for a transfer within related host taxa in mites is the bark-beetle-clade within Histiostomatidae (Astigmata), an example for non related side hosts is the mite Histiostoma maritimum (Histiostomatidae, Astigmata)

Do side-hosts or intermediate hosts as results of host increases commonly need to be systematically close relatives of the main host? The answer is no, although parasites are usually better pre-adapted in infesting a host, which shares a maximum of common characters with the main host. Within the mite family Histiostomatidae, there exists a clade of mites being associated with a clade of beetles. I named it bark beetle-clade (e.g. Wirth, phd thesis, 2004). Mites and bark beetles performed a parallel evolution, which required host increases and host changes towards related hosts and subsequent evolutionary adaptations to harmonize with these new hosts, either to become specific for a new host or to deal with a range of host species.

But the transfer of a parasite to new hosts can also happen towards not closely related host species, representing a scenery being based on a common ecological context between main hosts and side hosts. The phoretic mite Histiostoma maritimum for example is host specific for at least two closely related beetle-species of genus Heterocerus (Heteroceridae). But the mite regularly also appears on predatory beetles of genera Elaphrus and Bembidion (Elaphrus cupreus and Bembidion dentellum, Carabidae) (S. Wirth, phd thesis 2004 and subsequent studies). These beetles partly share the same habitats with Heterocerus: sapropel around ponds, being exposed to sunlight and warmth. In my research about the mite H. maritimum, I hypothesised that the phoretic mite instar might switch over to Elaphrus and Bembidion, for example when these predators feed on adult Heterocerus beetles, larvae or cadavers. Although I could regularly find mites in lower abundances over years on the side hosts (collected in the Heterocerus sampling sites), it is unknown, whether the „switch-over“-scenario was a starting event in an evolutionary past to establish the mite to new additional hosts, where they would today survive more or less independently from the original Heterocerus source, or whether the mites regularly need to switch over in the above mentioned situations, and in consequence side hosts with no Heterocerus-contact would thus lack the mite. A possible support for the latter hypothesis are my laboratory findings about the preferred developmental habitat of the mite, which was cadavers of died Heterocerus beetles. In my experiments the mite remained on its Heterocerus– carrier until this died. Mites subsequently developed on the beetle’s cadavers, feeding there on bacteria and fungi (the phenomenon is named necromeny). Mites under laboratory conditions developed also seemingly successfully on E. cupreus– and B. dentellum-cadavers. But I could so far never continue these studies and don’t know, whether or how well mite colonies with having only cadavers of these two side-hosts available would reproduce compared to mites being reared in Heterocerus settings. In case of a strict substrate specialization for Heterocerus cadavers, the side hosts would be dead-end hosts, and permanent reinfections from the original host source would be required to explain the regular mite abundance in Elaphrus and Bembidion.

IMG_0019photoshop

IMG_0018photoshop

IMG_0020bphotoshop

IMG_0021b photoshop

Histiostoma maritimum, a adult female with conspicuous copulation opening, b both adult genders in dorsal view, c, d copulation opening in dorsal and sideview, SEM, Berlin 2020/ ca. 2002, copyrights Stefan F. Wirth

Assumed transfer of virus SARS-CoV-2 from bat main hosts via a pangolin as intermediate host towards humans:

There is an ecological context between bats and pangolins

The new corona virus SARS-CoV-2 is assumed to be host specific to a group of animals and from there infesting another animal as intermediatehost, from which presumably humans were opened up as new host source. There are researchers interpreting us humans as an dead-end hosts, as unlike in bats human people can be harmed remarkably with the lung disease COVID-19 (corona virus disease 2019), triggered by SARS-CoV-2. As at least from a general statistical point of view a high majority of infested people shows no or only slight symptoms, thus it can up-to-date not be excluded that Homo sapiens is in order to become a fully potential side host, because all a parasite needs in order to „survive“ before all other requirements is the (statistically) surviving of its host.

There is evidence that bats (Chiroptera) represent the main host, thus representing the „natural virus reservoir“, while pangolins (Pholidota) presumably act as intermediate hosts. This main-host-to-intermediate host context is for example reported as putative scenario by Ye Z.-W et al. (Int Biol Sci, 2020), who stated that based on molecular features the bat Rhinolophus affinis (Rhinolophidae, Chiroptera) is hosting a virus most similar to SARS-CoV-2 differing from all other known corona viruses (Similarity 96.2 %, nucleotide homology). The pangolin species Manis javanica was identified to carry formerly unknown CoV genomes, being according to the same authors with 85-92 % similar to SARS-CoV-2 (nucleotide sequence homology).

800px-Lesser_short-nosed_fruit_bat_(Cynopterus_brachyotis)

Megabat Cynopterus brachyotis as example for a species native to Southeast Asia, Wikipedia: Anton 17 / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)

800px-Naturalis_Biodiversity_Center_-_RMNH.MAM.33159.b_ven_-_Rhinolophus_affinis_hainanus_-_skin

Bat Rhinolophus affinis as known reservoir of a virus most similar to Sars-CoV-2. Wiki commons: Naturalis Biodiversity Center

Pangolins and Chiroptera (bats and megabats, this taxon subsequently sometimes refereed as „bats“) are systematically not closer related to each other. Pangolins (Pholidota) are considered to represent the sister taxon of the clade Carnivora. Chiroptera were reconstructed as sister taxon to the clade Euungulata (containing animals such as horses, cattle or whales). But both, Chiroptera and Pholidota, can be connected by an ecological context. Pangolins (Pholidota) are species, which are either adapted to live preferably on the ground, or to spent most of their time on trees. Both types are specialised ant and termite feeders, which use cavities on the ground or inside trees as hideaways. They additionally give birth to their offspring inside these burrows and subsequently use to stay there with their young for a while. Such cavities can accidentally be the same time aggregation and resting places for bats, excluding megabats, which use to rest during daytime on exposed areas on trees. Manis javanica has a semi-arboricol life-style, spending time in trees and on the ground. This pangolin uses different resting cavities, either subterranean burrows or tree cavities.

800px-Zoo_Leipzig_-_Tou_Feng

Chinese pangolin Manis pentadactyla, a ground living species, Wikipedia: nachbarnebenan / Public domain, Zoo Leipzig, Tou Feng

413px-Pangolin_borneo

Pangolin Manis javanica as known host of a virus similar to virus SARS -CoV-2. Wikipedia: creative commons Piekfrosch / CC BY-SA

Chiroptera and Pangolins are in South Eastern counties often subject to hunting, as both for example play a role in the traditional Chinese medicine. Thus a virus transfer to humans via main host or via the putative intermediate host is assumed to have happened on animal markets (in the province Wuhan in China).

Which indications point to animal hosts as original source of virus SARS -CoV-2 ?

The scientists Andersen et. al (2020) explain there was no virus-engineering instead of a natural evolution

But which proofs exist that animal hosts sources such as Chiroptera and pangolins are involved in the transfer of the virus SARS -CoV-2 to humans? The lack of general knowledge is still fundament for conspiracy theories, such as an artificial creation of the new corona virus in laboratories with biological warfare purposes.

K.G. Andersen et al. („The proximal origin of SARS-CoV-2“, Nature Medicine, 2020) concluded based on their molecular research that the genetic template for specific spike proteins forming structures, which the virus body possesses on its outside for holding on and penetrating into the host cells, showed evidence for a natural evolution and not for an engineering. They argue with the strong efficiency of the spikes at binding human cells, which makes an engineering implausible and evolution based on natural selection highly probable. The authors additionally examined the overall molecular structure of the backbone of SARS-CoV-2. Backbone can be explained as the „skeleton spine“ of a macromolecule as a continuous row of covalent bond atoms. This overall backbone structure of the new corona virus is according to the authors similar to viruses, which were isolated from Chiroptera and pangolins and dissimilar to other corona viruses, which are already known to science.

SARS-CoV-2_without_background

Spikes (here in red) in Sars-CoV-2 hold on and penetrate into host cells, Wikipedia: CDC/ Alissa Eckert, MS; Dan Higgins, MAM / Public domain

Can a host increase happen more or less spontaneously with a subsequent enormous success (as for example in virus SARS-CoV-2)?

And: Can the complexity of adaptations to a main host decide for the option of a host increase?

An example for a tendency to spontaneous temporary host changes is mite Histiostoma piceae (Histiostomatidae, Astigmata)

Is it imaginable that a host change or a host increase happens spontaneously and subsequently having such a remarkable impact to the new host, as it is recently ongoing with the SARS-CoV-2 pandemic? Host specificity, host changes and parasitism or mutualism in general are result of evolution. The most common case of evolutionary changes in organisms or viruses is a slow process of stepwise modifications being based on mutations and natural selection.

But it needs also to be stated that as more complex the pattern of characters is (genome, morphology, behavior, function-morphology, reproduction biology etc.), which binds a parasite or mutualist to a specific host, as more evolutionary steps are necessary to perform a host change and as longer an exposure to mutation and selection would need to take place. However it is alternatively possible that a host specificity is only based on a few, but important features. Slighter ecological pressures focusing towards these features might then theoretically allow rather fast host changes.

As an example with a putatively reduced complexity of host adaptations I herewith introduce the phoretic mite Histiostoms piceae (Astigmata, Histiostomatidae), which I repeatedly studied and reared under laboratory conditions. The scientific describer of this species (Scheucher, 1957) discovered a strict host specificity to the bark beetle Ips typographus. According to my and her research, the mite has along the geographic distribution of that bark beetle a high abundance, beetles without the mite are rare. In 2016 I discovered H. piceae being additionally associated with Ips cembrae as a second regular host. I cembrae represents the sibling species of I. typographus (Wirth, Weis, Pernek, Sumarski List, 2016). Exceptions are smaller bark beetle species, which regularly burrow their galleries into those of I. typographus or I. cembrae. It is unknown, whether these small bark beetles as cohabitants of I. typographus carry the mite temporarily or regularly. But the former might be confirmed by the following interesting phenomenon in the mite H. piceae:

In case of very high numbers of mites inside bark beetle galleries and a relatively low numbers of corresponding Ips species, the phoretic instar of the mite attaches under natural field conditions all available arthropods inside or adjacent to the galleries of the main hosts, including bigger mite species, different beetle species or – as already mentioned – smaller bark beetle species (for example my studies in the area of the city Tyumen, Siberia, Russia, 2015-2016). This indiscriminateness for specific hosts under certain conditions might indicate that the substrate specificity of the mite H. piceae is more developed than the phoretic specificity for the host insect itself as a carrier . In such a case, I would generally expect that a host change or a host increase might faster happen in future evolutionary steps than in mite species, which are strictly choosy for their specific host carrier. In H. piceae the tolerance for a variety of carriers (unlike the specificity for substrate conditions) might in a future evolution even succeed as pre-adaptation, which under suitable circumstances might spontaneously allow a regular transfer to new hosts. A second important step towards a real host increase would require that the mite becomes able to stay permanently on its new host. In the H. piceae context the evolution of a tolerance for different substrate conditions might once become an important selective factor in may be opening up new permanent host-associations.

Temporary side hosts, as described in the above explained observations, would represent nothing then dead-end hosts, as they are unable to carry the phoretic mite to suitable habitats for its development. But under favorable circumstances, a former dead-end host might even become a new permanent host.

Histiostoma piceae, a adult female in side view, b in dorsal view, c mouthparts and digitis fixus, d adult male in dorsal view, e in ventral view, Berlin 2020/ ca. 2002, copyrights Stefan F. Wirth

hpiceaeimage0498photoshop

Phoretic instar of Histiostoma piceae, ventral view, lightmicroscope with dig contrast, Tyumen (Siberia, Russia), 2016, copyrights Stefan F. Wirth

Two possible ways of virus transfer from bats to humans according to Andersen et al. (Nature Medicine, 2020)

Did the virus evolution towards the recent state happened prior to a first human infection, namely inside animal main host populations, or did it happen afterwards inside human populations?

As there is not yet much known about the presumed host specificity of the virus SARS-CoV-2, Andersen et al. (Nature Medicine, 2020) reconstructed based on their up-to-date knowledge two possible ways of a virus transfer from bats to humans and finally to the recent pandemic situation in the world:

The virus might have evolved its recent human-pathogenic features within the main host populations of bats. Natural selection must have been the corresponding major driving force. The relevant adaptations are represented by the above mentioned two molecular characters of the spike proteins in SARS-CoV-2 (receptor-binding domain for host cell binding and cleavage sites for an opening up of the virus). Under such circumstances the authors expect that the infection of humans could have happened with an immediate effect, leading at once into the pandemic situation of today. An intermediate host would in this option be not obligatory. A direct transfer from bats to humans might be imaginable.

The second option is based on findings that corona viruses in pangolins possess similar receptor-binding domains (RBD) as in the human SARS-CoV-2 version. Thus the authors reconstruct a version according to which a non or less pathogenic form of the new corona virus was via pangolins transferred to humans and circulated there for an unknown period of time. Even further possible intermediate hosts, such as ferrets or civets, are considered to have been involved in that scenario. During its time inside human populations the virus would have developed its recent features due to evolution and finally was able to be spread explosively between human populations on a pandemic level.

A higher probability for one of the two scenarios can according to the up-to-date knowledge not be assumed

I am not sure, whether the authors take under consideration with their second option that pangolins might even represent a main host and whether bats would not necessarily be involved in the animal-human transfer of the virus. But according to Ye Z.-W. et al. (Int Biol Sci, 2020) the context between bats, pangolins and humans was stated: „We cannot exclude the possibility that pangolin is one of the intermediate animal hosts of SARS-CoV-2“. But whether the pangolin is intermediate host or main host would at this point not effect the general conclusion of each of the two scenarios. The virus was either pre-adapted regarding efficient spike protein characters and then infested human populations rapidly or was transferred to humans via an animal host and subsequently evolved its key-features for a pandemic „success“ within human populations. Although the authors have up-to-date no indications allowing a preference for one of the scenarios, they point out that the potential of new SARS-CoV-2 outbreaks after the extinction of the recent human pandemic would be much higher in case of the scenario one, as the pathogenic virus would under these conditions survive in the animal main host populations.

I would as addition to scenario two suggest to test a modified hypothetic scenario, in which the non pathogenic ancestral version of the virus did not only circulate between human populations until it reached its pandemic key-features, but even circulated between humans and animal hosts forth and back for a longer time. This would according to my understanding of evolution improve the probability of a stepwise evolution of important key-features.

Special and unusual features of main hosts can improve the diversity within their parasites, important conditions for subsequent host changes: a very efficient immune system in bats pushes the evolution of their viruses

Chiroptera (bats and megabats) are not only known as putative main hosts for SARS-CoV-2, but also for Mers, Sars, Marburg and ebola viruses. Scientists did a research about the question, whether there are specific features existing, which explain, why Chiroptera are favorable hosts for viruses with a seemingly potential for epidemic and pandemic effects in human populations.

C. E. Brook et al. (eLife, 2020) discovered an unusual efficient immune system in Chiroptera, which they think protects these hosts from harmful diseases by their virus parasites. This bat immune system is considered being the evolutionary driving force for the variety of viruses and their relatively fast modifications, as they would need to compete with immune system responses by regularly evolving new adaptive features.

The authors discovered that the antiviral messenger substance interferone-alpha is released in most mammals as a response to the detection of viral genetic material inside body cells. Whereas they found Chiroptera releasing this messenger substance permanently. This would according to the scientists enhance the virus defense in bats and might explain that the above named viruses do not trigger noticeable diseases in their main host recervoir.

I would resume that such conditions might support the scenario one of Andersen et al. (Nature Medicine, 2020), according to which viral key features to infest humans had evolved prior inside the animal host populations. Regular new virus modifications as result of the competition between these viruses and their bat-host immune responses might support the randomness of the development of features, which as pre-adaptations could support a relatively fast host change. Even when I generally prefer scenarios of stepwise adaptations of organisms to new conditions, a higher probability of the availability of suitable pre-adaptations might at least accelerate evolutionary proceedings.

Longtime parasite – host – relationships, a dead-end for the parasite?

Are relationships between organisms over longer time periods of advantage or disadvantage for parasitic or mutualistic passengers? A longtime host specificity of a parasite (or mutualist) requires a strict specialisation, which means complex morphological, ecological and behavioral adaptations.

According to the acarologists P. B. Klimov & B. Oconnor (Systematic Biology, 2013) long-term specialisations could impede the flexibility of such organisms to react to environmental changes via evolutionary adjustments. Thus parasites with long-term relationships to the same hosts might be endangered to reach a dead-end. They would die out. A possible way out from such a disastrous end can be a re-evolution of the parasite back to its ancestral free living conditions, a situation prior to the evolution of its parasitic host specificity. But Dollo’s law states that a complex trait cannot re-evolve again. Thus long-term parasitism could according to the law not other than leading into a dead end. Nevertheless the authors could present an impressive example as proof to the contrary: based on their complex research about house dust mites, the acarologists reconstructed that these mites were originally parasites of warm blooded animals and subsequently evolved into free living associates of mammals, as which they are of medical relevance due to the remarkable allergic reactions in humans.

I think that the access of this paper does contain enough general biological aspects to ask, whether the dead-end scenario of long-term parasite relationships might also concern viruses, which don’t have an option for a free living existence, as they don’t live at all and are unable to perform independent strategies. At least might this long-term scenario support the findings of C. E. Brook et al. (eLife, 2020) that only unusual and regularly changing features of a long-term host might trigger regular corresponding responses by the parasite, another option to prevent a parasite from a dead-end due to a long-term host relation. This might explain, why certain viruses often parasite bats and successfully persist there, while other suitable hosts lack the very efficient immune system of bats and thus cannot host a specialized virus permanently. Regarding SARS-CoV-2 such theories might indicate that the virus would finally move towards dead-ends in humans and other host species, but might permanently survive in chiropterans. It’s a statement only being worth of consideration, in case of scenario one of Andersen et al. (Nature Medicine, 2020). And only in case, it would come out that the virus adapts well to humans, which would require a much reduced harmfulness, as parasites cannot survive by killing their hosts. In case of a dead-end host due to high mortality rates instead of a normal host increase, aspects of a long-term relationship with such a host don’t need to be discussed, as a shorter temporary outbreak and no beginning of a long-term relationship at all would result out of it. One needs additionally to consider that viruses as non living organic bodies with genome and with an unusual ability for fast modifications might often not fit into biological models based on living organisms.

800px-House_dust_mites_(5247397771)

House dust mite Dermatophagoides pteronyssinus. Wikipedia creative commons: Gilles San Martin from Namur, Belgium / CC BY-SA

Summary

Host specificity must be differed from generalism. Known host-parasite specializations include a complexity of strategies. And even different kinds of hosts must be named, such as main host, side-host, intermediate host or dead-end host. Evolutionary steps such as host increase, host change or temporary hosts can appear. Parasitism and mutualism differ from each other as life-strategies, but share common features as association between different organisms: host specificity follows similar rules, an indication that both life-modes can evolve out of each other. The human globalization sometimes supports the spreading of parasites or their hosts over the world, host changes or host increases can thus be performed including organisms, which would under normal conditions get no contact to each other.

Viruses do not represent living organisms, but protein lumps with a genome and depend on living host cells for their reproduction and „survival“. like in living organisms, also viruses underlay the mechanisms of natural selection and evolution. Viral parasite – host – relationships show general similarities with features in living organisms, including options for a host change or host increase, the use of intermediate hosts or a kind of mutualism (passenger viruses).
There is evidence that the main host reservoir of SARS-CoV-2 are Chiroptera, while pangolins (and other mammals) might represent intermediate hosts. Humans are either dead-end hosts (preferred by most authors) or result of a successful host increase. Researchers could not yet decide, whether features to infest humans in a pandemic context evolved prior to the transfer to humans inside animal main host populations or whether a harmless version changed to humans and in their populations evolved its pandemic potential. A major drive motor for a long-term successful relationship with bats is the unusual immune system in chiropterans.

Copyrights Dr. Stefan F. Wirth (phd), all rights reserved, excluding photos labeled as creative common content from Wikipedia sources. Berlin, 2 April 2020

References:

J. R. H. Andrew’s (1983): the origin and evolution of host associations of Sarcoptes scabiei and the subfamily Sarcoptinae Murray. Acarologia XXIV, fasc. 1.

B. Berland (1961): Copepod Ommatokoita elongata (Grant) in the eyes of the Greenland Shark – a possible cause of mutual dependence. In: Nature, 191, S. 829–830.
Cara E. Brook, M. Boots, K. Chandran, A. P. Dobson, C. Drosten, A. L. Graham, B. T. Grenfell, M. A. Müller, M. Ng, L-F. Wang, A. v. Leeuwen (2020): Accelerated viral dynamics in bat cell lines, with implications for zoonotic ermergence, eLife; 9:e48401.g W

Pavel B. Klimov, Barry OConnor, Is Permanent Parasitism Reversible? (2013): —Critical Evidence from Early Evolution of House Dust Mites, Systematic Biology, Volume 62, Issue 3, Pages 411–423.

Kristian G. Andersen, Andrew Rambaut, W. Ian Lipkin, Edward C. Holmes, Robert F. Garry (2020): The proximal origin of SARS-CoV-2. Nature Medicine.
Martin Schaller: Demodex-Follikulitis. In: Gerd Plewig, Peter Kaudewitz, Christian A. Sander (Hrsg.): Fortschritte der praktischen Dermatologie und Venerologie 2004. Vorträge und Dia-Klinik der 19. Fortbildungswoche 2004. Fortbildungswoche für Praktische Dermatologie und Venerologie e.V. c/o Klinik und Poliklinik für Dermatologie und Allergologie LMU München in Verbindung mit dem Berufsverband der Deutschen Dermatologen e.V. (= Fortschritte der praktischen Dermatologie und Venerologie. 19). Springer Berlin, Berlin 2005, ISBN 3-540-21055-5, S. 273–276.

Wirth S. (2004): Phylogeny, biology and character transformations of the Histiostomatidae (Acari, Astigmata). phd thesis. Internet Publikation FU Berlin, http://www.diss.fu-berlin.de/2004/312.

Wirth, S. & Moser, J.C. (2008): Interactions of histiostomatid mites (Astigmata) and leafcutting ants. In: M. Bertrand, S. Kreiter, K.D. McCoy, A. Migeon, M. Navajas, M.-S. Tixier, L. Vial (Eds.), Integrative Acarology. Proceedings of the 6th Congress of the European Association of Acarologists: 378-384; EURAAC 2008, Montpellier, France.

Wirth S. & Moser J. C. (2010): Histiostoma blomquisti N. SP. (Acari: Histiostomatidae) A phoretic mite of the Red Imported Fire Ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Acarologia 50(3): 357-371.

Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY (2020): Zoonotic origins of human coronaviruses. Int J Biol Sci ; 16(10):1686-1697. doi:10.7150/ijbs.45472.

Zhang W., Chaloner K, Tillmann HL, Williams CF, Stapleton JT (2006): „Effect of Early and Late GB Virus C Viraemia on Survival of HIV-infected Individuals: A Meta-analysis“. HIV Med. 7 (3): 173–180.

https://www.sciencedaily.com/releases/2020/03/200317175442.htm

When elbows are used in the world of science

I was part as acarologist and natural scientist in a 2011 scientific paper about a mite preserved as fossil in amber, which was analyzed using the X-ray computed tomography and determined systematically on a family level. In this time, this scientific publication had a remarkable impact in international scientific media, because it seemed, as if this mite was the smallest animal ever visualized via CT on a high quality level.

 

Strange behaviors of so called „colleagues“?

 

The technical work was performed by technical scientists in Manchester UK. The natural scientific analyses was performed by me as the only European specialist for the mite family Histiostomatidae. But I noticed already in the time period of  this publication that there were strict tendencies by the so called „colleagues“ to mention my name as less as possible, this concerned the drafting of international media releases and also a poster presentation (my name was added days later) and an online abstract on a conference in Berlin. The corresponding poster was even awarded, but I got my award certification only after demanding explicitly for it. I much later, when I decided to complain officially at the Museum of Natural Sciences in Berlin, needed to learn that I was not even considered as one of the first authors. I didn’t notice that before, because the former „colleague“, Dr. Jason Dunlop, curator at this museum, was mentioned in the original citation with 1) after his name, me too. Thus I interpreted this as a double-first-author-ship. It then came out that the „1)“ only indicated the same scientific address, because I was in that time officially a volunteer at the MFN in Berlin.

 

Mite in an amber fossil, made visible by using the x-ray computed tomography, acarological work: Stefan F. Wirth

 

The work of a scientific specialist: here an acarologist

 

The question must be: Who is needed to scientifically interpret three dimensional photos of an amber fossil, in this case the deutonymph of a mite of the Histiostomatidae? A specialist for this taxon is needed, who is able to perform scientific drawings, based on the photos. He first needs even to decide, which of the photos are showing details of scientific relevance. While drawing, the specialist must distinctly recognize single microscopic structures, so that all these structures can be clearly separated from each other including all borders or gaps between single components. The scientific term is „homologisation“. Homologisation means: comparing single structures with (phylogenetically) equivalent structures of other (related) species. As there were not more fossils available, the homologisations needed to be based on recent mites. Thus the specialist must have a very competent knowledge of a high number of species from this family. To reach that level requires hard work over many years. I had the necessary level and found character details in the fossil, which were fitting to recent members of mites of the Histiostomatidae. But it’s of course not enough to discover such homologous structures. They must be made visible for every reader of the scientific paper. Thus the drawings need to be correctly labelled, which requires careful morphological studies. Then a detailed description needs to be written. But that is far not enough. Readers of a scientific paper are usually no specialists. That’s why they need a written introduction, in which the summary of the general recent knowledge of a mite group needs to be presented. And after all that they even expect you to discuss your results. It’s an own chapter, subsequent to the result descriptions.

The discussion chapter also requires a maximum of specialized competence. Some researchers even say that this is the first part of a paper that they read as it puts the results into a general scientific context based on arguments, mostly according to the principle of the most economical explication. Conclusions in the discussion part have usually the character of theories based on the facts, which the paper could contribute. Topics of a discussion part in such a paper as ours are systematic conclusions, the discussing of homologisation problems and also the formulation of a possible relevance for the recent scientific knowledge and also the future scientific importance of these new findings.

This all is, what I as a specialist needed to do. I additionally contributed one of my photos of a recent mite for comparative reasons and captured a stereomicroscopic photo of the mite fossil to demonstrate, how much the CT could improve the visible details of the amber fossil. I guess I did quite a lot, the other part was overtaken by the technical colleagues in Manchester. They needed to explain their technical situation and also needed to discuss their ideas about the meaning of their CT-technology for the future of science, focussed also on work with amber fossils.

 

Contributions of different authors to a scientific paper

 

To be honest I don’t remember, where there was still space left for content issue contributions by Dr. Dunlop. But he did some organizational stuff, he collected the contributions from the UK colleagues and me, he arranged the photo table via a graphic software based on the photos, which I had determined as scientifically relevant, and he was the so called corresponding author (I allowed him, because he is an English native speaker). That means, he submitted the final paper to the journal and communicated with the editors. Of course reviewers always ask for revisions. That was then mine and the technicians job again.

It is common that corresponding authors represent automatically the first authors of a paper. But it is not mandatory. I for example once was the corresponding author of a paper, which was based on a bachelor thesis that I (in major parts) supervised. I despite of my in fact major authorship regarding the scientific paper itself and my additional corresponding activities let her (the student) the first authorship. That even means that this paper can be easier found, when searching for her instead of my name. I just wanted to support a younger scientist.

And of course also a double first-authorship might be possible, especially representing  an adequate solution, in case another author even contributed more concerning the scientific content itself. In case of objections by the editors, the one, who contributed more, should to be the first author.

 

„B-word“?

 

But to come back to the amber paper of this article, it is surely not fair to reduce the scientist, who had the major scientific work on a paper secretly to a second author. It is highly unfair to leave him out in the international press release information. And I don’t trust to say here, what it is, when deleting his name entirely from a poster and an online abstract presentation and even impeding him to get a certification of a poster award in time for his work. Should one use the „b-word“? Generally bullying would be an act against the good scientific practice, but there would be clear proofs for malevolence against specifically somebody needed to get corresponding behaviors sanctioned. But when „only“ the elbow mentality is obvious, which means that people leave somebody out for their own better recognition, then the distinct malevolence against the victim is not clearly proven. Thus the interesting question arises: when is elbow behavior equal to bullying and when not?

 

Warning to young scientists

 

What I can say for sure is, even when the original bullying assumption is still a kind of questionable: after you complained, you might need to expect a real merciless and long lasting bullying. That’s why I intend to warn all young scientists: be careful and double check, with whom you cooperate. The wrong choice can be a failure as long as you do not agree being a bullying victim. The consequences can last over years and can destroy your whole career. I even once was told by a bullying victim that the accused institution did not even deny its bullying activities, but stated that depending of the kind of position, somebody has in an institute, an equality right would not be automatically existent. I go further and say: don’t become a natural scientist at all, except you are in a love relationship with an internationally highly influential professor.

In these days there are alternatives for possible natural scientists. Earlier I was a harsh critic of the modern gender sciences (sometimes also named genderism). But they have much financial capacities. Nobody there needs to sharpen his elbows, a good basis for fair careers, and based on that after a while surely also the most important basis for a good quality work!

 

Copyrights Stefan F. Wirth, Berlin 2019

 

Mite Histiostoma sp., putatively new species, from mud around ponds (Berlin) and its morphology

Gravel pit area „Im Jagen 86“ in Berlin as biotope

 

„Im Jagen 86“ is a former gravel pit area in the Berlin urban forest Grunewald. It today represents a dynamic biotope, consisting of different types of habitats: mud around ponds, sand dunes, dry grassland and forest. Since the early 2000th, its habitat composition partly changed remarkably. Out of several (smaller) ponds, only one bigger pond remained. All ponds originally were surrounded by sapropel, a habitat for different interesting organisms, such as beetles of Heterocerus, Elaphrus and Bembidion. The mite Histiostoma maritimum was commonly found phoreticaly on Heterocerus and Elaphrus. I additionally in those early 2000th described the new mite Histiostoma palustre from Hydrophilidae of Cercyon and Coelostoma, living inside the saporopel as well. Today only a few small areas with open sapropel exist. I so far did not look for Histiostoma maritimum again and don’t know, how common it still is. At least Heterocerus beetles are harder to find than in earlier years. I so far did not found Histiostoma palustre again.

 

Rearing conditions of a putatively new mite species

 

I collected new mud samples in March 2019 at different areas, but found developing histiostomatid mites in a sample from the edge between mud (sapropel) and mosses. It is a species I never found before there and which might represent a new species. Only females could be morphologically studied. Nymyphal stages (not deutonymphs) are only available as video footage. No males were found. I had added bigger potato pieces to stimulate microorganism growth as mite food into the soil sample (room temperature). After about one month, a few mites (females and proto/tritonymphs) developed on only one of these potato pieces and quickly died out shortly after my filming activities and after I could prepare a few females. I actually try to get them reared again. Due to the low temperatures in March, it is considered that these mites hibernate independently from insects in the substrate. No bigger insects could be found in the substrate, which might be the corresponding carriers. But different dipterans (e.g. Ceratopogonidae) developed, they had no mite deutonymphs after hatching in my sample.

 

 

 

 

Morphological reconstruction of females and important characters as well as behavioral observations

 

The females of Histiostoma sp. differ from other females, which I know, by the mosaic of the following characters: body conspicuously elongated with a distinctly big distance between hind ringorgans and anus, digitus fixus almost simple shaped, fringes or ridges on palparmembrane, 6 dorsal humps, unusually big copulation opening. Leg setation not yet studied. One pair of ventral setae hardly visible (not in the drawing). Nymphs were observed during burrowing activities (footage), females are may be also able to. Deutonymphs or males would be useful to decide, whether the species is new. Some species are only described by deutonymphs.

 

Berlin, March/ June 2019 All copyrights Stefan F. Wirth

Oribatida mites: Fast runners and slow crawlers

Microhabitats often consist of a complexity of organism species. Under suitable conditions, samples can be kept „alive“ for months and even for years by regularly adding moisture and organic tissue, in case of my sample of this footage: patato pieces.

 

 

Mites of the Oribatida and their different ways of locomotion. Copyrights: Stefan F. Wirth, Berlin April 2019. Please give the video a like on youtube too.

 

Soil samples from island Norderney

 

This soil sample was collected in summer 2018 on the North Sea island Usedom during my participation at the „Geo Tag der Natur“. It contained several specimens of the predatory chilopode Lithobius sp. and pieces of rotting wood, moss and forestground, everything collected under rotting treetrunks and tree branches. The samples additionally contained the carabid beetle Pterosticus cf. niger and ants of genus Lasius. Samples were collected in a small forest area with wetland aspects. The soil quality was rather moist.

 

Astigmatid mites

 

I later added potato pieces and regularly some water droplets to the sample with still living big arthropods/ insects. After some weeks, specimens of the astigmatid mite Acodyledon cf. schmitzi developed on dryer areas of the potato pieces. These mites were presumably phoretic associates of the carabid beetles. They died out after several months, after the sample had dried out a little bit and may be due to changes of the room temperature during winter time.

 

Oribatida

 

Now, almost a year later, the micro habitat is inhabited by mites of the Oribatida in greater numbers of specimens of at least three species: Nothrus sp. (genus not yet clarified), Nothrus palustris (already found for the first time shortly after the sample collection) and a species of Phthiracarida.

 

Locomotion and biodiversity

 

Purpose of the short film is to show different organisms, cultured after about a year in this sample: mites, nematodes, collembolans and microorganisms, fungae and bacteria. Of the bigger arthropods/insects, only one Lithobius species survived until now.  Also the diversity of ways of locomotion in different oribatid species is emphasized: There are slow crawlers (Nothrus) and fast runners (Phthiracarida).

 

Berlin, April 2019, Copyrights Stefan F. Wirth

Mite Histiostoma sachsi (Astigmata): Juvenile dispersal instar deutonymph and its orientation behavior

Some animals live in environments, where there is (almost) no light available. It makes no sense to see in the dark, but it is important for a specimen to know, where it actually is, where it is going to, whether there is enough food and what the conspecifics are doing. Predators need to be recognized in time, and a sexual partner must be found. There is also need for an efficient communication between specimens of a species. How can all this be performed by mites of the Astigmata, which usually live inside decomposing soil habitats in a more or less permanent darkness?

 

Olfactory sense organs in mites of the Histiostomatidae

 

Histiostoma sachsi (Histiostomatidae, Astigmata) is such a mite, living inside cow dung or compost. It might have a rudimentary ability for a light perception, but has not visible or functional eyes. It cannot produce any sounds. It can only feel and smell. Seemingly very limited abilities, but the contrary is fact: Due to evolution this mite is perfectly adapted to its life-style. It can feel objects by touching on them using its body setation (= body hairs). And it smells by means of very specialized body hairs, which are called solenidia and appear in different types, shapes and functions. These mites don’t smell on the level of us humans, which would be very insufficient. If at all, it should be compared with a dog. I am always fascinated when seeing blind dogs and how perfectly they can interact with their environment, despite their handicap. That’s may be how the efficiency of olfactory perception abilities of such a mite must be imagined. They do not only perceive scent particles from other animals, plants and soil components. Even olfactory signals from their conspecifics will be correctly and differentiatedly interpreted. And that not only marginally.  Olfactory signals represent indeed the major mode of their intraspecific communication.

 

Chemical communication of mites of the Histiostomatidae

 

Communication always requires contributions from both sides, a signal and an answer. These mites smell the signal of a conspecific using their solenidia, and they answer by the secretion of biochemical components. For these purposes, they possess a huge and complex gland system located on the upperside of their backs. Volatile excretions aggregate inside a big and rounded reservoir and finally leak to the outside via a pore, called oilgland opening. These gland systems are located symmetrically on both sides, each with one reservoir and one pore.

The meaning of the sent volatile message simply depends on the composition of the correspondingbiochemical components. Even diffferent stereochemical configurations of the same molecule can have different meanings. Citral for instance is a major component and has in different stereoisomers different functions. Such cummunicative volatile signals are usually named pheromones. And mites of the Histiostomatidae can indeed produce different kinds of pheromnes via the same gland system. Aggregation pheromones inform specimens about a suitable place to stay together with their conspecifics, for example due to a sufficient amount of food resources. Alarm pheromones solicit mites nearby to flee from an unpleasant situation. Sexual pheromones attract adult partners to each other in order to perform the mating procedure. But the gland secretions can even more. As allomones, they communicate with specimens of other species. They function as defenses against predators or other dangerous cohabitants.

 

Deutonymphs need to find a carrier for dispersal

 

Another form of communicative interspecific interactions is performed by a specific juvenile instar, the deutonymph. It looks morphologically quite different from all other instars (heteromorphic situation), does not need or possess a functional mouth, has a thicker cuticle as protection against drying out and a complex sucker organ on its underside in order to attach itself to an insect or another bigger arthropod. Deutonymphs of the astigmatid mites search for bigger carrier-arthropods to get carried from one habitat to another (dispersal strategy  is calledphoresy). While doing so, they again use their specifically modified leg setation (hairs) on the first pairs of legs to perceive scents for the detection of a suitable and passing by carrier. Basically it is still unknown, whether the term „communication“ is indeed appropriate in this context as we don’t know yet about a mutual interaction between deutonymphs and their carriers, before the phoretic ride begins.

 

 

Olfactory orientation of the deutonymph of Histiostoma sachsi, copyrights Stefan F. Wirth, February 2019.

 

Specific way of walking in deutonymphs

 

In detail, different kinds of behaviors can be observed in deutonymphs, when searching a carrier. The detailed behavioral patterns in this context can slightly differ between even closer related species. Deutonymphs of Histiostoma sachsi as all deutonymphs show a characteristic mode of walking, in which especially the first pair of legs plays an important role. During each step, performed by four pairs of legs, the first legs are lifted up much higher than all other hind legs. While doing so, they slightly tremble up and down. A behavior that mostly supports a better basic orientation inside a „jungle-„micro-landscape, being filled up with soil particles and decomposing plant tissues. But what H. sachsi deutonymphs additionally need in order to find their carriers is repeatedly to rest between the walking activities. Thus the first legs, which normally are still walking legs, are made free and that way available for the perception of carrier-scent-components only. These  namely are the legs that bear the highest densiy of solenidia.

 

Two different behavioral modes for an efficient orientation towards a carrier

 

Two different modes of resting with olfactory searching activities could be observed: In periodic intervals the deutonymph attached to the ground by using its sucking structures. They were then more or less laying on their entire undersides with only their forebodies slightly lifted up. By alternating moving the first legs up and down, olfactory information could be perceived from all directions without having the own body as a barrier to backwards. To improve its orientation situation, the deutonymph additionally turned on its own axis around, being stabilized by its sucking structures, which are flexible enough to follow these movements. When the deutonymph intended to continue its walk, it first needed to detach from the ground, which happened via muscle contractions that caused an abrupt detachment of the corresponding suckers. But main aim of the deutonymph is to find an elevated place, where the probability of a passing by carrier is especially high and from where a bigger insect (or other arthropod) can easier be ascended. There the second behavioral mode was performed. The deutonymph only fixed the edge of its hind body to the ground, again using the suckers on its underside, which are located close to this edge. This time the entire mite body stood in an upright position. The first legs again „waved“ alternating up and down and could under these especially elevated conditions even perceive scents from bigger distances. By occasionally slightly and alternating turning their upright bodies to both sides, olfactory information could be easier detected from all directions.

 

Carrier of H. sachsi still unknown

 

The frequency of such movements in mites increases typically as closer a suitable carrier approaches. But this was not yet observed or documented for Histiostoma sachsi. Its carrier inside the compost substrate is still unknown, which is why I so far could’t perform corresponding experiments. The species‘ describer, Scheucher (1957), found her mite specimens in cow dung and also didn’t identify the corresponding carriers there.

The observations presented in my video are part of my research project about morphologies and behaviors of deutonymphs in the Histiostomatidae.

 

Berlin, February 2019. All copyrights Stefan F. Wirth.

 

Eudicella colmanti – Mating behavior of a colorful beetle

Rose chafers represent a group of colorful beetles, which taxonomically belong to the Scarabaeidae and thus are relatives of famous beetles such as Scarabaeus sacer, well known for rolling dung into balls and for being an important symbol for creation and the rising sun in the ancient Egyptian world. Even the stag beetles are more distant relatives of rose chafers.

 

Colorful and active during daytime

 

Unlike some related beetle clades, rose chafers are usually active during the day. This is also indicated by their very colorful bodies. Colors in insects can have different functions, but they usually all are optical signals, which require a visibility in the sun light. Greenish colors are common in rose chafer species and might have optical inner specific signal functions, but also might support an optical camouflage. This would also make sense in the preferred habitats of the adult beetles, which usually feed on softer parts of blossoms and on their pollen. But they also feed on fruits, whereby mostly liquids are incorporated as the chewing mouthparts are not very well developed.

 

Tropical rose chafer Eudicella colmanti during its copulation behavior, 4K videography, copyrights Stefan F. Wirth.

 

Tropical rose chafers from African countries

 

About 3000 species of rose chafers are known, of which most inhabit the tropical zones. The about 20 species of the genus Eudicella are more or less restricted to the African continent.

Eudicella colmanti is native to Gabun, Kamerun and Kongo, thus a species with a main distribution in Central Africa. But E. colmanti is like other species of this genus worldwide often kept in terraria, although species like E. smithi are more common inhabitants of this kind of artificial habitats. They all can be more or less easily reared.

 

Specific flying mode and copulation behavior

 

This is why I was able to study behavioral characters in detail. And rose chafers indeed show interesting behaviors. They for example perform a unique way of flying. It is a specific character of rose chafers (a so called apomorphy) that they fly with closed fore wings, which cannot be opened as in other beetles.

I documented in my video the mating behavior of a beetle couple. Interestingly this was not too difficult, although both genders can, when separated from each other, react to disturbances with a high agility.

 

Almost permanent copulation activities

 

But in the copulatory position, they accepted to be removed from their terrarium to the filming set and even stayed in position, when they were enlighted from different positions with very bright light beams. Please note the the female, which I observed regularly actively searching for a position underneath the male (behavior not clearly visible in my footage). But it also conspicuously never stopped feeding (on an apple) during the copulatory process (very well visible in my footage), obviously to obtain enough nutrients for the production of eggs. A copulation in my couple is not a unique event, but is repeated regularly and can take hours.

 

Phoretic mites

 

Both genders carried bigger numbers of mites. These were phoretic deutonymphs of the taxon Astigmata (Acariformes, Acaridae). As never determined the mite species, as it was not clear, whether it represented a natural associate of these tropical beetles, or whether it was a species native to Germany, which for example was carried into the terrarium via Drosophila flies.

Copyrights Stefan F. Wirth, Berlin March 2017/ February 2019

Berlin forest Grunewald – former gravelpit area, type location for the mite Histiostoma palustre

The city of Berlin geomorphologically consists of witnesses of the Weichselian glacier. The modern city itself and adjacent federal states represented end moraine areas with fluvio-glacial debris accumulations,  even well visible today due to a very sandy soil composition and a corresponding vegetation, creating landscapes, which partly almost look like from around the Mediterranean Sea.

Sands carried by the glaciers towards their end positions remained in partly huge layers with a thickness of up to 20 meters or more.

 

Gravelpit zone and its history

 

Also the area of the old gravelpit zone, called „Sandgrube im Jagen 86“, in the Berlin forest Grunewald is located inside such an end moraine zone, which was represented by plates belonging to the geological Teltow-plateau. In the time period between 1966 and 1983, gravel was excavated for industrial purposes. After 1983 a part renaturation was supported by nature conservationists. In 1992 in total 13 hectares of the former gravelpit area were allocated as nature conservation areas.

Other parts of this unique landscape remained accessible for the public. They represent today popular places for leisure and experiences of nature. Especially the huge sand dune is a popular destination for families with children.

 

Aerial videography of the gravelpit area in January 2019, copyrights Stefan F. Wirth. Please like my video also on Youtube, in case you like it.

 

 

Gravelpit zone and its ecology and biodiversity

 

The whole area – nature protection and accessible zones – show a complex mosaic of different  landscape types, offering numerous animal and plant species a well suitable refuge.  Neglected grasslands and dry meadows are surrounded by sandy areas free of any vegetation („dunes“) and moist osier beds and wetlands with ponds. The wetlands represent breeding grounds for numerous amphids. Lizards such as the sand lizard Lacerta agilis and snakes such as the grass snake Natrix natrix can regularly be observed. Sandy habitats offer space and specific ecological conditions for a interstitial fauna, consisting for example of different bee and sand wasp species.

In total the area bears more than 300 ferns and flowering plants, 16 breeding bird species, 7 amphibian species and 188 butterfly species.

 

My own scientific mite research in the gravelpit area

 

I was performing scientific research in that gravel pit landscape during the work on my phd-thesis between 2000 and 2005. My interest was (and one of my interests is still) focussed on specific organisms living around the shoreline of ponds.

The whole area of the gravelpit landscape is a good example for ecological changes that happen naturally with the ongoing time or even being affected by climatic changes. Between 2005 and 2018, the landscape partly changed significantly. Neglected grasslands and dry meadows covered less space originally, and instead several smaller ponds existed and offered amphibs and wetland inhabiting insects additional habitats. But some of the ponds already years ago dried out permanently. Their remnants are now covered by extended dry grasslands.

In former times of my phd thesis and even today, my research interests focus and focussed on the mite fauna in and around the muddy shorelines of ponds inside this former gravelpit area. The ponds are mostly surrounded by sapropel, a seemingly black and brownish mud, which is colored that way due to the incorporation metal sulfides. These muddy areas develop due to biochemical modifications of organic material in the absence of oxygen. Different insects, especially beetles live on top of these waterside habitats or even inside. Carabids of genera Elaphrus or Bembidion represent predators, while heterocerid beetles of genus Heterocerus are substrate feeders, presumanly with a preference for diatoms. Also water beetles of Dytiscidae and Hydrophilidae inhabit these habitats.

 

The mites Histiostoma maritimum and Histiostoma palustre

 

I discovered some of these beetles as dispersal carriers for specific mites. The dispersal strategy to take a ride on bigger animals to become carried from one habitat to another is called phoresy. Mites of the Astigmata represent typical phoretic organisms. I am scientifically specialized in a specific family of the Astigmata, which is named Histiostomatidae, and I discovered the mite species Histiostoma maritimum Oudemans, 1914 on Heterocerus fenestratus and H. fusculus as well as on Bembidion and Elaphrus species insside and on top of these muddy zones. I was the first acarologist, who ever studied the biology of this mite species. I furthermore discovered another mite species that was completely new to the scientific knowledge, and thus I scientifically described it as Histiostoma palustre („palustris“ = „muddy“) in 2002.

This species deserves particularly mention due to an unusual biological phenomenon: populations show a so called male dimorphism (better diphenism). Besides males with a „normal“ morphology, morphologically modified males appear. Their second legs differ from the typical shape of a mite and are modified into clasping organs. The function of these conspicuous organs could so far only be interpreted in the context of male to male competition conflicts for a female. In such situations, I observed the organs being used as arms against other males, against such ones with and such ones without clasping organs.

 

img_0015.jpgbest

Right modified leg of a male of Histiostoma palustre. Copyrights Stefan F. Wirth, 2002/ 2019

 

img_0016best

Modified leg of a H. palustre male in closed position. Copyrights Stefan F. Wirth, Berlin 2002/ 2019

 

img_0017.jpgbest

Underside of a H. palustre male with modified leg. Copyrights Stefan F. Wirth 2002/ 2019

 

img_0013.jpgbest

Asymmetry: male of H. palustre with only the right leg modified. Copyrights Stefan F. Wirth 2002/ 2019

 

img_0012.jpg best

Asymmetry: male of H. palustre with only the left leg modified. Copyrights Stefan F. Wirth 2002/ 2019

 

img_0014.jpgbest

Copulation of a Histiostoma palustre male with both-sided modified legs. Copyrights Stefan F. Wirth, Berlin 2002/ 2019

 

img_0010best

Details of a copulation with a modified male, copyrights Stefan F. Wirth, 2002/2019

 

 

Berlin, January 2019. Copyrights Stefan F. Wirth

Months passing, but where has all the life gone?

I am standing in Berlin. The sky is a grey monotony. And while tiny waves gently wash around the little sandy beaches, tree skeletons surround the hidden bays on the Havel river. A semi-lucid vapor is covering the branchage of leafless treetops, already early in the afternoon. It is December in Berlin. The entire spectrum of bright summer colors is overlaid by muddy shades. Only larger groups of pine trees gleam in a greenish-black out of a giant cemetery of seemingly inanimate bodies of beeches, oaks, birches and maples. The cry of a heron in a far distance, but where has all the colorful and manifold life gone?

T. S. Eliot (1888-1965) wrote („Journey of the Magi“):

„A cold coming we had of it, just the worst time of the year  For a journey, and such a long journey: the ways deep and the weather sharp, The very dead of winter…“

Shakespeare (1564-1616) on Sonnet  97:

„…What freezings have I felt, what dark days seen! What old December’s bareness everywhere!…“

Seeming emptyness of a Forest-waterside landscape in winter, copyrights Stefan F. Wirth, Berlin December 2018. Please like my video also on Youtube, in case you really like it.

 

Bareness, emptyness, death, attributes being combined with winter since mankind exists. From the evolutionary point of view a serious problem that early humans  had to master. The seemingly emptyness was for them a very real lack of sources. They needed to prepare the winter time, food needed to be stored and protecting clothes to be stiched. There was no well organized international trade of goods, no fresh apples and pears in winter, no cheap winter jackets made in China. Winter meant to fear for the basic survival.

Today we live a different life, being independent from the seasons. Life today means for us to fear for the basic survival of our environment. What are the effects of a global climatic change? What the effects of our environmental pollution? What changes are independent from all that and just represent natural processess as they happened again and again since about 470 millions of years, when the first plants appeared on shore?

 

Most life does not disappear in winter, it just hibernates – alive!

 

The Berlin nature refuges around the forest Grunewald-terrain are interesting due to their complex mosaics of different habitats close to each other. Forest Grunewald in Berlin and the sandy beaches and bays along the Havel river offer space for lizards, an interstitial insect fauna, dry grassland visitors such as butterflies, wetland animals like frogs and newts, aquatic inhabitants like river lampreys, numerous bird species and inhabitants of wood in all kinds of decomposition stages such as bark beetles, longhorn beetles or hermit beetles.

 

Migration

 

Some animal inhabitants of the Grunewald/ Havel-area in summer migrate during the winter season, but most species stay. They hibernate and are even now in December still there.

 

Birds

 

Many birds show a strict migration behavior to avoid northern winters, others migrate in greater numbers, while some specimens stay, and some migrate only over smaller distances. Which of those migration behaviors is exactly performed by which bird species might depend on climatic conditions and is object of scientific research. NABU for example regularly starts projects, to which the general public can contribute with own observations. One of them takes place in early January and is named „Stunde der Wintervögel“ („the moment of winter birds“).

Common cranes Grus grus and greylag geese Anser anser normally migrate over bigger distances and numerous bigger routes towards southern winter refuges. Especially cranes are in summer for examples inhabitants of the Havelland Luch, thus prefer areas more western of Berlin. A trend was observed by ornithologists that more and more often, obviously corresponding with a global warming, troops of crane specimens stay instead of migrating southward.

Migration behavior of common cranes and greylag geese in Linum, autumn 2018, copyrights Stefan F. Wirth

Female of the red-backed shrike in Berlin (Köppchensee). The bird is a typical long-distance migrating animal. Copyrights Stefan F. Wirth, 2018

 

Butterflies

 

The red admiral butterfly Vanessa atalanta is known as a migrating insect. The „normal“ case is that migration from Southern Europe towards Central Europe is performed in spring. There, a summer generation develops and in autumn either tries to migrate back southward or to hibernate as adult butterfly, where it hatched, for example in Germany. But specimens mostly do not survive their tries to hibernate during our cold winters. This makes the admiral to a rare example of our summer-fauna, which over here partly indeed dies out before winter begins. The migration routes of populations throughout Europe is still topic of research. The migration behaviors seem to change corresponding to a global warming.

Admiral butterfly in Berlin, copyrights Stefan F. Wirth, 2018

 

River lamprey

 

Also the river lamprey Lampetra fluviatilis obligatory needs migrations over bigger distances. But these migrations do not correspond primarily with our cold seasons, but instead with the complexity of its life cycle. Larvae, which differ morphologically from adults, hatch in our freshwaters and develop as filter feeders within about three years, in which they  hibernate inside their aquatic freshwater habitats. They then migrate after a morphological metamorphosis towards the Sea. There they live as ectoparasites on fishes until they reach sexual maturity and then return into freshwater-rivers to reproduce and finally die. It is still subject of research, whether they return for their reproduction to the areas of their original larval development.

 

Hibernation

 

Sand lizard

 

The sand lizard Lacerta agilis  hibernates in hideaways, which are able to hold a temperature around 5°C. There they fall into winter numbness due to their unability to regulate their body temperature independently from the environment. Juveniles and adult genders start their hibernations  at different times.

Sand lizard juvenile, found in Berlin Grunewald/ Teufelsberg, copyrights Stefan F. Wirth

 

Frogs

 

Toads and frogs hibernate after finishing their metamorphosis, juvenile and mature specimens spent a diapause as a total numbness such as in lizards. Amphibians and lizards are poikilotherm, thus their body temperature corresponds to their environment (some monitor lizards Varanus were found to have physiological abilities for a limited self regulation of their temperature, which is an exception within the taxon big Squamata).

Marsh frog Pelophylax ridibundus, pool frog Pelophylax lessonae and edible frog Pelophylax kl. esculentus survive the cold season in hideaways, which maintain acceptable environmental temperatures. While pool and edible frog hibernate on land, the marsh frog spends its diapause in aquatic habitats. Skin respiration then plays an even more imortant role, which is why these frogs require a high availability of oxygene. The edible frog is even from the evolutionary point of interest, as it represents a hybride between two closely related species, namely marsh and pool frog. It is in many of its populations non reproductive with other hybrides and needs one of the parental species to reproduce. But interestingly triploid specimens of the edible frog sometimes develop in populations and bear the complete genomic information of one of the parental species. These edible frogs can reproduce with other hybrides They can be found throughout Berlin. Such specimens are difficult to be determined morphologically, as they resemble in their outer appearance either to the marsh or the pool frog.

 

Sand wasps

 

Insects hibernate in different developmental instars, if holometabolic, egg, larva, pupa and adults are options, if hemimetabilic eggs, nymphs or adults perform the winter diapause. Some insects can even hibernate in all of their developmental instars.

The quite common red-banded sand wasp Ammophila sabulosa for example is part of the insect interstitial fauna and does not practise brood care, but maternal care. Females built up several single nests up to 20 centimeters into the soil, each of them containing only one cell for the deposition of always one egg. As food supply they hunt caterpillars preferrably of Noctuidae, stun them with a sting and carry them to their nests, which will be closed with soil particles afterwards. The last brood hibernates as pupa or larva inside the nest.

Sand wasp Ammophila sabulosa in Berlin, copyrights Stefan F. Wirth, 2018

 

 

Grasshoppers

 

The grasshopper Sphingonotus caerulans is a thermophilic species, which is a typical inhabitant of sandy areas in Southern Europe. It also appears in Berlin. Its eggs are deposited into deeper soil layers and hibernate there.

Grasshopper Sphingonotus caerulans, male, found in Berlin (Köppchensee). Copyrights Stefan F. Wirth, 2018

 

terrestrial Isopods

 

The common woodlouse Oniscus asellus for example hibernates as nymph or mature adult in hideaways inside deeper soil layers, dead wood or compost. These terrestrial curustaceans become inactive, when colder temperatures appear. Specimens can live over several years (usually about two years).

An example for a woodlouse, in this case a mediterranean species of genus Porcellio, copyrights Stefan F. Wirth, 2018

 

Hibernating animal communities

 

Communities of different animal species often hibernate altogether. I focus here on inhabitants of micro habitats. Especially long living insect nests can bear greater numbers of cohabitants. But also deadwood or compost bear many different animal species side by side.

 

Ant nests

 

Nests of the red wood ant Formica rufa represent complex animal communities, as it is typical for ant nests generally. Besides ants and their brood noumerous nematode and mite species inhabit nest mounts of F. rufa. Additionally different larvae of other insect taxa can be members of the ant community, I even discovered the larvae of the green rose chafer sometimes inside red wood ant nests in the area of the Berlin forest Grunewald. Also several species of pseudoscorpions are known to science to be adapted for a survival in nests of F. rufa in Europe: commonly found are for example the species Allochernes wideri and Pselaphochernes scorpioides. Pseudoscorpion species of genus Allochernes are known to practice a dispersal strategy named phoresy. They use bigger and better motile insects as carriers and that way are transferred to new habitats. Besides ants, their suitable phoretic carriers seem to be dipterans. Also different mite and nematode taxa inside nests of the wood ant perform phoresy. A mite example is the species Histiostoma myrmicarum (Acariformes, Histiostomatidae), which seems to be carried by ants and eventually additionally also by other arthropodes.

The larva of the green rose chafer inside a nest of Formica rufa, copyrights Stefan F. Wirth, 2011

Mite Histiostoma myrmicarum (Astigmata) collected from its hibernation habitat in the soil underneath an old oak in Berlin forest Grunewald, copyrights Stefan F. Wirth, 2018

 

Formica rufa itself hibernates inside its nest in absence of eggs, larvae or pupae. Only the queen and workers remain during the cold season. Not much is known about other nest inhabitants. More research is needed.

Typical ant cohabitants (with Formica rufa) do not necessarily need to hibernate inside their ant nests. I collected deutonymphs of the mite Histiostoma myrmicarum in winter 2017/18 from soil (some centimeters deep) underneath an old oak in the absence of ants and their nest. The well scleotized deutonymph (phoretic dispersal juvenile stage) might represent the hibernation stage.

The advantage for organisms, living in ant nests, is a higher and constant temperature due to the ant worker’s nest-care-activities. Additionally the defensive behaviors of ants offer protection for those organisms being adapted (based on evolution) to survive inside ant nests.

Due to suitable temperatures, many organisms inside nests of the red wood ant might stay even active in winter. Interactions between ant nest-cohabitants can be very complex. An example is the Alcon large blue butterfly Phengaris alcon, being adapted to other ant species: Myrmica rudinodis and M. rubra. The caterpillar resembles an ant worker due to the morphology of its cuticle and the production of ant-similar pheromones. Ant workers fail for this imitation, carry the caterpillar into their nests and feed it. The butterfly’s larva hibernates inside the ant nest as larva, molts into pupa in the subsequent spring season and finally leaves the nest as adult butterfly. Still inside the ant nest, the caterpillar can become a victim of the parasitic wasp Ichneumon eumerus. Its female invades the ant nest, only after recognizing that caterpillars of the blue butterfly are indeed inside. It then confuses the antworkers due to the release of different chemicals and then attaches its eggs to the caterpillar. The wasp’s larva hibernates there and molts into its pupa inside the host’s pupa. The adult wasp afterwards leaves the ant nest.

Phoretic mites of the taxon Astigmata inside a nest of Myrmica rudinodis, found on island Usedom, copyrights Stefan F. Wirth

 

Bark beetle galleries

 

Numerous mite and nematode species live inside the galleries of bark beetles. Such a complex fauna is known for many bark beetle species. Additionally the larvae of different other insects can be cohabitants. Depending on the species, they can perform all kinds of life-strategies: being predators of adult bark beetles or their offspring or of other gallery cohabitants, they can also be microorganism feeders and prefer the bark beetle galleries due to its ideal warmth-isolation or due to the specific micro-climate that is created there by the activities of all different inhabitant activities. Besides animals, also fungi and bacteria contribute to that climate.

Bark beetle Hylurgops ligniperda and phoretic mites, copyrights Stefan F. Wirth, 2016

Wood associated nematode Diplogaster sp. found in the tree fungus Laetiporus sulphureus in Berlin, copyrights Stefan F. Wirth, 2016

Mite deutonymphs of the Histiostomatidae mites inside the galleries of the bark beetle Tomicus destruens in Italy, Vesuvio National Forest, copyrights Stefan F. Wirth, 2016

Bark beetle Ips typographus with some of its gallery-cohabitants, such as phoretic mites, found in SW-Germany (Saarland), copyrights Stefan F. Wirth, 2015

 

Furthermore the composition of species in a bark beetle gallery changes with an increasing age of a gallery. Secondary infections are often performed by other wood parasiting beetles, after the bark beetle brood finished its development and left the gallery. A secondary parasitism can for example be performed by longhorned beetles.

The bark beetle Dendroctonus micans for example infests several conifer species: Picea, Abies, Larix and Pinus. This bark beetle can hibernate in all its instars: eggs, larvae or adults. Adults can in spring sometimes be found in specific hibernation-chambers. In a research project with russian collegues, I isolated beetles of that species in the early spring season in Siberia (Russia) out of such a chamber on Pinus silvestris. Adjacent to attached substrate particles, I found nymphal stages of the phoretic mite Bonomoia opuniae, a species of the Histiostomatidae (Astigmata), which was even new to science at that time. I described this species, which I so far only know from those siberian samples. It is still unknown, whether it also appears in Central Europe.

The nymphal stages (protonymphs and tritonymphs) of that mite species might represent the hibernating instars. They were not fallen into a numbness after the collection and even remained active in a refrigerator, where my samples were stored subsequently for a while. I doubt that the mite in winter can pass through different generations as it would happen in a warmer climate, because the found mite nymphs appeared -also active- still rather weak in their cold environment. Thus I assume these nymphs to hibernate throughout the winter season. But there is still much research missing about the ecology/biology of bark inhabiting mites.

Adult beetles of Dendroctonus micans with deutonymphs of Bonomoia sibirica, Tyumen/ Siberia, copyrights Stefan F. Wirth, 2017

 

 

Berlin, December 2018. Copyrights Stefan F. Wirth

 

 

 

 

 

Phoretic Mites waiting on Ant Pupae

Greater numbers of pupae from a nest of the myrmecine ant Myrmica rudinodis are attached by phoretic mites, which wait for these pupae to hatch. They would then attach the newly developed ants to be carried around and dispersed this way. They this way had already occupied their later ants before, namely during their pupal stage, one could call this phenomen „pupa-guarding“. In my samples, I discovered two species of mites performing this pupa guarding behavior. Most abundant were deutonymphs of the mite Forcellinia wasmanni (Astigmata). But also individuals of a mite species of the Gamasina were repeatedly discovered sitting on pupae, where they were hiding between head, ventrum and limbs of the pupa. They even seemed to defend their pupae, when they felt disturbed, e.g. by my filming activities.

 

Ant pupa guarding by mitees, looking for a carrier for dispersal

 

These pupa guarding-findings concerning this ant and with these corresponding mite species might be new to science (so far I didn’t found literature indications) and thus need to be studied closer in the future in order to understand the whole context of behaviors. In the footage, two types of pupae are visible, pupae of the winged alates and those of workers. Mites generally prefered both, but especially the deutonymphs of Forcellinia wasmanni seemed to appear more often on the pupae of later workers. Most pupae had at least one deutonymph attached, rarely, there were found up to four individuals. This is different to what could be found on older workers. They on their ventral side can have 4-6 deutonymphs. Many workers seem to be covered with the deutonymphs, but I didn’t check more workers until now, so I can’t say, how many were without mites. It is unknown, how deutonymphs come to the pupae, whether they simply leave older workers for the pupa-guarding or whether they were waiting in the soil for the pupae to arrive (due to the brood caring activitoes of the ants).

Mite-Life inside an ant nest. Copyrights Stefan F. Wirth 2015/18

 

Astigmatid mite with a strict relationship to ants

 

The mite Forcellinia wasmanni is known to be strictly associated with ants (e.g. Türk & Türk 1957). It is clear that attaching young female alates would secure the dispersial of the mite into a new ant nest. It is not clear, which function the transport via ant workers can have. But Türk & Türk (1957) mention that the free living instars of Forcellinia wasmanni would feed on dead ants. Such a kind of microhabitat for the development is not unique in astigmatid mites. Some species within the Astigmata are known to have such preferences for decaying cadavers, but are then feeding on microorganisms, which grow on these (insect) cadavers. Ant workers might be ideal to carry mite deutonymphs to new cadavers, where they would leave and develop. Ants generally have a very well developed hygienic behavior. This guarantees the mites to get access to cadavers regularly. I do not know any other video footage, showing living deutonymphs attached to their carriers on such a magnification level as visible in this film. The original footage of these deutonymphs is much longer.

 

Morphology and behavior of the dislersal-instar, the so called „deutonymph“

 

The function of the proterosoma (dorsal shield of the forebody) is acting as a flexible structure, protecting the mouthpart-area (non-functional in deutonymphs) and the fore-legs, but being very motile and being easily pushed backwards (under the following hyterosoma-shield), when the mite lifts up from the surface of the ant pupa. I cannot state much more concerning the second mite, found on pupae, which is a species of the Gamasina. I discovered this phenomenon only on three of my pupae. Ant nests represent complex communities of organisms, to which fungae, other insects, mites and nematodes can belong. The samples visible in this film were collected in July 2015 on the German island Usedom inside a forest area between the villages Zinnowitz and Karlshagen. The ant nest was quite small. An ant hill was not visible.

 

Complexity of life in ant nests

 

The complexity of life within ant nests is a result of evolution. I am an enemy of creationistic movements, including all modern faces of creationism. Creationism stimulates carelessness und illiteracy in the believing people.

 

 

Berlin August 2015/ December 2018, copyrights Stefan F. Wirth