Blog and online journal with editorial content about science, art and nature.

Tag: copulation

Mite Histiostoma palustre (Histiostomatidae, Astigmata), a mite species with two different male types

Current state of knowledge

Habitat and summary of general biology

I discovered the mite Histiostoma palustre in 2000 (and reared it at least until 2001) in the Berlin gravelpit area „Im Jagen 86“ at about 52°29’18.7″N 13°14’28.2″E and published the description in 2002 (2003). It is phoretically associated with at least two Hydrophilidae beetle species in bank mud (sapropel) around (in times of the sampling several) ponds. The phoretic juvenile instar deutonymph attaches its host insect to be carried that way to a new suitable habitat.

SEM photograph of ventral side of the deutonymph of Histiostoma palustre. © Stefan F. Wirth
SEM photograph of ventral side of Histiostoma palustre deutonymph as negative version, emphasizing single sicking structures and shapes of hind legs, © Stefan F Wirth

Phoretic hosts and attachment site

I in those times determined two host beetles as belonging to the genera Coelostoma and Cercyon. In laboratory host choice tests, in which deutonymphs in a culture had the choice between three different potential host species, there was a significant preference for those Hydrophilidae beetles, while another offered beetle species sympatrically living the same habitat was almost not at all attractive for the phoresy instar. But the choice test was performed as a smaller side project only and offered not more than a host tendency, as for example not a representative variety of insect species from the same natural field habitat of the mite was involved in these choice tests. But indications were at least clear enough that a host specificy (on a higher taxonomic level) of H. palustre can be stated. Mites preferred according to these tests a specific area for attachment on their hosts, which was the dorsal head area.

Two different male types and the difference between polymorphism und polyphenism

The mite showed under laboratory conditions a male diphenism with highly modified gripping organs or normal legs2. While the modified leg can appear on both sides or only on the left or the right side.

Polymorphism“ is used internationally as the overriding term for such a phenomenon. Here, following the teaching of my former research group at the FU Berlin, I distinguished between a purely genetically determined expression of distinctly deviating morphs and the determination of these morphs by the presence of certain environmental factors. In the latter case we are talking about polyphenism. Of course, genetics also play a certain role here additionally.

Studies with cultures grown at different temperatures suggested that males with modified legs 2 appeared significantly more frequently at higher temperatures than at lower temperatures.

Temperatures: 30-32 °C (measured in summer inside the culture dishes at room temperature) and 20°C (climate cabinet, temperature inside and outside the cultures almost equal). Experimental approaches and total numbers of males counted: 10 cultures with lower (don’t remember exactly) numbers of developing mite stages per each of the two different temperatures. n=237 males in total at low temperature, n=729 males in total at high temperature. The number of modified males grew significantly from 18% (20°C) to 45% (30°C), while normal males decreased significantly from 82% to 55%.

Therefore I called the mechanism for the formation of two morphs diphenism. These studies were also a besides project and the amount of data would need to be even bigger according to higher level statistical requirements.

SEM photos of a male morph with modified legs 2, © Stefan F Wirth
Detailed SEM view to a male with legs 2 on both sides modified into gripping organs, perspective almost from the front side. © Stefan F Wirth

About the function of the modified male legs

I could observe in the mite cultures in which H. palustre thrived very well on decomposing potato pieces at about 20°C room temperature that the modified legs of the heteromorphic males used as prehensile organs played a role in intraspecific competition for female mating partners. Here several males, with and without gripping organs, were usually wedged together in veritable clusters around female tritonymphs or adult females. This was because the fighting happened more or less in a slow motion speed with apparent longer lulls in between. During the fights, the legs of the opponents were seized with the prehensile organ and the competitor was slowly pulled away from the coveted female.

Less is known about which selective pressure would favor the morph with gripping organ

Males with normally developed legs were at least seemingly in my observations clearly at a disadvantage here, since their second legs in particular could be easily grasped and they were hardly capable of defense and counterattacks. Nevertheless, random counts at that time did not provide any clear indication that heteromorphic males were possibly found significantly more frequently in the final mating position. The same applies to expectations regarding an unequal sex ratio in favor of males. Instead, males and females appeared to be almost evenly distributed in random evaluations. Additionally males with modified legs on both sides and with only one modified leg on the right and the left were in randomly counted cultures seemingly equally distributed.

Still many questions unanswered about the biology of H. palustre

It was unfortunately not tested at all, whether females mated by heteromorphic males and those mated by homomorphic ones had different reproduction successes. In connection with this biologically highly interesting mite species, many questions about its life strategies could not be examined deep enough during times of my PhD thesis. There was no time for this, since my research at the time was geared towards systematic comparative studies of numerous species. Unfortunately, the species could so far not be found again in its habitat „Im Jagen 86“ – at least not by the means of substrate samplings with only accidental Hydrophilidae inside – until today so that further studies were not yet carried out. This seeming lack of the species‚ presence in its former habitat is probably due to ecological changes in this area, which originally had several ponds, from which now only one remained.

A normal leg 2 of H. palustre compared with a modified leg indicating homolog leg articles and corresponding setation.

What makes this male diphenism interesting from the evolutionary point of view

Two distinct morphs within the same sex of a species is the result of evolution. It does at first not matter, whether it is a dimorphism or a diphenism. A fundamental question, which cannot be answered at this time, is: does the trait of these two morphs indicate that the species is on the way to finally having exclusively only males with prehensile organs, and is the species even on the verge of becoming the to cross the species boundary into a new species? Or is the characteristic of two male types a permanently stabled character, because exactly this has strong selection advantage?

In this context, fossil finds of closely related species (in amber) would be of interest, but unfortunately these are not yet known. It would also be interesting to compare different populations of this species, which are also not yet available. It furthermore would be of interest to understand, what exactly the advantage of modified males versus non modified males might be. Is it possible that an advantage of the modified-legged males is simply that they copulate more frequently, although smaller datasets have not yet confirmed this? And/or do females mated by modified males produce significantly more offspring?

And in the special context of the knowledge at that time that it is a temperature-dependent diphenism, one could raise the question of whether the species „evolutionally prepared itself“ by developing two male forms to cope better with temperature fluctuations. In view of increasing global warming, this may be of general biological interest.

A similar species from Egypt

A publication about a species with modified legs 2 as in H. palustre

In a conference proceedings contribution Bishlawy, S. E. M. O., and S. F. M. Allam published an article containing the description of a species of Histiostomatidae, which the authors have named Histiostoma egypti ( Proc.2nd Inter.Conf.Ent.Soc.Egypt, vol. 1, pp. 407-420, 2007). This is worth of being mentioned here more detailed in context of a possible close relationship of these species or a convergent evolution. But due to the lack of systematic facts, a decision hypothesis is not yet made. I can just emphasize that one showed me photos of that species on a conference in Cairo (Egypt) in 2003, and my first and superficial interpretation was that it even is Histiostoma palustre.

I have not checked whether the species Histiostoma egypti has been accepted internationally as a new species and is therefore also listed in the Zoological Record, as this is not relevant to the considerations here. It is interesting that a similar species was discovered in Egypt, about which there are some biological observations.

However, I only have a text version without illustrations, which is online published like that and which is why I cannot assess this species systematically/taxonomically on a deeper level. The authors refer to a similarity of their species with Histiostoma palustre including a similar diphenism of the males. I, as I already mentioned above, remember confirming this resemblance at an acarological conference in Cairo in 2003, where the co-author showed me photos of the later H. egypti.

Association with laboratory cultures of entomopathogenic nematodes

According to the authors, the species entered the laboratory with entomopathogenic nematode substrate and is doing well in the nematode cultures. The mite species is called semiaquatic, which quickly dies off at lower humidity. According to the authors, the thriving of the mites is to the detriment of the nematodes, which can die as a result. In this context, the authors mention having observed that the heteromorphic male form appears more frequently when live nematodes are present, while the homomorphic form and also the phoretic deutonymphs predominate when previously present nematodes have died.

My general experiences with histiostomatid mites and free living (phoretic) nematodes

A connection between the development of different mite morphs and the presence or absence of living nematodes never became particularly obvious to me in my studies at the time on species with different male types. Therefore, I have never specifically investigated such a connection and can therefore judge the correctness of such a connection as neither improbable nor very probable.

I can confirm, however, that basically all Histiostomatidae species that I examined always appeared together with nematodes, which were usually free-living, microorganism-eating representatives of the Rhabditidae or Diplogastrinae, which are also phoretic and possibly even were spread by the same hosts as the mites.

In this context, I am aware of the phenomenon that nematodes and mites can either compete with each other for food or reduce each other, for example chemically. In any case, it can often be observed that after some time in a culture vessel in which both animal groups were initially numerous, only the mites or the nematodes thrived in large numbers.

General information about the feeding behavior in Histiostomatidae

According to my recent research, based on frame-by-frame videographic analysis and SEM studies, Histiostomatidae species use their filter-feeding mouthparts to feed on decomposing fungal material that is also bacteria-rich. It is highly probable that the fungi are brought by the mites themselves into their habitat, which seems to happen hyperphoretically via fungal spores. The mites probably also control the growth and partial death of the fungus themselves in the form of their fungicidal gland secretions. Specific studies about the feeding behavior of H. palustre do not exist on a more advanced level. Slides and numerous SEM shots might indicate the transport of spores, but I so far had no time to examine those specimen closer. Such results thus need to be presented at another occasion.

Information about nomenclature used in the 2003 publication and about the citation of this species description

Nomenclature for dorsal/ventral setation of juveniles and adults used in this old species description of mite H. palustre was my own invention and is no longer used by me for practical/systematic reasons of comparison.

The nomenclature I introduced at the time of that species description for the pattern of individual fields that cover the thickening of the cuticle (proterosoma shield) on the anterior dorsal side of the proterosoma is still retained by me to this day. I still consider this characteristic in adults to be systematically relevant.

Cuticular shield of H. palustre stabilizes muscle origins at the dorsal proterosoma, close to the mouthparts, © Stefan F. Wirth

The original species description is cited as a 2001 publication on the Acarologia abstract page and is cited as 2002 publication in the PDF of the article provided by Acarologia as open access publication. In fact it was accepted for publication in 2001 and finally published in 2003. Thus I sometimes cited it as 2003 publication, but 2002 would be a correcter citation too. At least the full species name must be Histiostoma palustre Wirth, 2002.

Link to the original species description:

© Stefan F. Wirth 2023, Berlin

Mate guarding of a juvenile female in mites of the Histiostomatidae (Astigmata, Acariformes)

Male of Histiostoma sp. guards a female tritonymph, copyrights Stefan F. Wirth 2005-2022


A strategy to avoid male competition for females


Some mites of the Histiostomatidae practice so-called mate guarding of subadult females in order to have an advantage in the intraspecific competition between males for adult females. My SEM image shows a male on top of a female, which is still inside its tritonymphal cuticle. Inside the tritonymphal cuticle, the adult female is already developed and shortly before hatching. Before hatching, the legs of the new instar are folded under the body side. The new second leg on the right side is visible in the SEM, because the weak cuticle of the old leg broke off. This strategy to avoid sexual competition is quite common with Histiostomatidae. Due to insufficient mite material and not longer available clear ecological data, I determine the long haired adults of my old SEM series with caution as Histiostoma sp., it seemingly was found around sap flux on a tree trunk in Berlin. The species is not identical with Seliea pulchrum (= Histiostoma pulchrum), typically known from sap flux. The distance between the male legs 1 and 2 in the photo is about 0.1 mm. These SEM objects were seemingly chemically dried for the scanning electron microscopic procedure. The photos were taken around 2005 with an older SEM at FU Berlin. © Stefan F. Wirth Berlin 2022

Eudicella colmanti – Mating behavior of a colorful beetle

Rose chafers represent a group of colorful beetles, which taxonomically belong to the Scarabaeidae and thus are relatives of famous beetles such as Scarabaeus sacer, well known for rolling dung into balls and for being an important symbol for creation and the rising sun in the ancient Egyptian world. Even the stag beetles are more distant relatives of rose chafers.


Colorful and active during daytime


Unlike some related beetle clades, rose chafers are usually active during the day. This is also indicated by their very colorful bodies. Colors in insects can have different functions, but they usually all are optical signals, which require a visibility in the sun light. Greenish colors are common in rose chafer species and might have optical inner specific signal functions, but also might support an optical camouflage. This would also make sense in the preferred habitats of the adult beetles, which usually feed on softer parts of blossoms and on their pollen. But they also feed on fruits, whereby mostly liquids are incorporated as the chewing mouthparts are not very well developed.


Tropical rose chafer Eudicella colmanti during its copulation behavior, 4K videography, copyrights Stefan F. Wirth.


Tropical rose chafers from African countries


About 3000 species of rose chafers are known, of which most inhabit the tropical zones. The about 20 species of the genus Eudicella are more or less restricted to the African continent.

Eudicella colmanti is native to Gabun, Kamerun and Kongo, thus a species with a main distribution in Central Africa. But E. colmanti is like other species of this genus worldwide often kept in terraria, although species like E. smithi are more common inhabitants of this kind of artificial habitats. They all can be more or less easily reared.


Specific flying mode and copulation behavior


This is why I was able to study behavioral characters in detail. And rose chafers indeed show interesting behaviors. They for example perform a unique way of flying. It is a specific character of rose chafers (a so called apomorphy) that they fly with closed fore wings, which cannot be opened as in other beetles.

I documented in my video the mating behavior of a beetle couple. Interestingly this was not too difficult, although both genders can, when separated from each other, react to disturbances with a high agility.


Almost permanent copulation activities


But in the copulatory position, they accepted to be removed from their terrarium to the filming set and even stayed in position, when they were enlighted from different positions with very bright light beams. Please note the the female, which I observed regularly actively searching for a position underneath the male (behavior not clearly visible in my footage). But it also conspicuously never stopped feeding (on an apple) during the copulatory process (very well visible in my footage), obviously to obtain enough nutrients for the production of eggs. A copulation in my couple is not a unique event, but is repeated regularly and can take hours.


Phoretic mites


Both genders carried bigger numbers of mites. These were phoretic deutonymphs of the taxon Astigmata (Acariformes, Acaridae). As never determined the mite species, as it was not clear, whether it represented a natural associate of these tropical beetles, or whether it was a species native to Germany, which for example was carried into the terrarium via Drosophila flies.

Copyrights Stefan F. Wirth, Berlin March 2017/ February 2019