biologe

Blog and online journal with editorial content about science, art and nature.

Tag: deutonymphs

Teaching: Ich als Naturalist – Me as a naturalist

Bumble bee Bombus sp. in Berlin, copyrights Stefan F. Wirth 2021/2022
Honey bee Apis mellifera in Berlin, copyrights Stefan F. Wirth 2021/2022
Deutonymphs of the microscopically tiny mite Schwiebea cf. eurynymphae (Acaridae, Astigmata) formally attached to beetle Phosphuga atrata under the bark of felled tree trunk of Tilia platyphyllos in urban park Rehberge in Berlin, copyrights Stefan F. Wirth, 2021/2022
Larvae of beetle Oryctes nasicornis from Italy with associated gamasid mites under studio light conditions, copyrights Stefan F. Wirth, Berlin 2016/2022
Land crab Metasesarma obesum under studio conditions, copyrights Stefan F. Wirth, Berlin 2017/2022

.

Ich biete Unterricht, Förderkurse, Vorträge und Fortbildungskurse zu den Themen Naturkunde, Naturschutz, Artenvielfalt, Ökologie, Klimaschutz und Evolution an sowie Unterricht oder Vorträge zur Naturfotografie oder der Naturfilmerei. All dies entweder auf Honarbasis oder via Anstellung. Bitte entnehmen Sie weitere Informationen meinem Menüpunkt zum Thema Unterricht und Lehre. Selbstverständlich verfüge ich über Qualifikationsnachweise zu meinen diversen bisherigen Lehrtätigkeiten sowie meine fachliche Kompetenz. Bitte beachten Sie hierzu auch meinen Menüpunkt Curriculum Vitae.

Doch was sind eigentlich meine Themengebiete? Im Folgenden finden Sie interessante Fragestellungen aus meinen Kompetenzbereichen.

Was ist ein Ökosystem? Welche Ökosysteme sind gut untersucht, welche eher nicht? Wie gut kennt man die Artenvielfalt von Mikro-Lebensstätten in Deutschland, und was ist über deren biologische (ökologische) Zusammenhänge bekannt? Was ist denn eigentlich eine Art, was sind denn dann Zwillingsarten, und was versteht man gar unter einem Artenkomplex (kryptische Artengruppe)? Ist das Aussterben von Arten ein normaler Bestandteil der Evolution oder ist das Aussterben einer Art immer zwingend ein alamierender Hinweis auf eine (evtl. menschengemachte) Naturkatastrophe? Wieviele Arten aus allen Organismengruppen weltweit kennen wir, und wieviele in etwa kennen wir noch nicht? Warum kennen wir viele Arten, sogar in Deutschland, noch immer nicht? Wie erkennt man neue Arten, und wie ist eine sogenannte Artbeschreibung aufgebaut? Ist der Mensch eine Tierart, und wo im Stammbaum der Tiere ist er dann anzusiedeln?

Warum sind ein Wald, ein Teich oder eine Wiese Orte für interessante Entdeckungen, und zwar insbesondere auch für Kinder? Was lebt denn da, und wie ist es an seinen Lebensraum angepasst? Was haben unterschiedliche Arten in solchen Lebensräumen eigentlich miteinander zu tun? Und wie beobachtet man Tierverhalten am besten? Wie dokumentiert man es aussagekräftig, um sein Wissen später mit Freunden oder über soziale Netzwerke teilen zu können?

Wie kommt es zum sogenannten Global Warming, der globalen Klimaerwärmung? Wie können wir sie nachweisen? Warum ist sie zu einem beträchtlichen Teil menschengemacht? Und welche Auswirkungen haben Klimaerwärmung und die Ausbeutung natürlicher Ressourcen (Energiespeicher, Rohstoffe, wie zum Beispiel Tropenholz) für die Zukunft der Menschheit und die Artenvielfalt auf unserer Erde. Welche Auswege erhofft man sich? Woran wird derzeit gearbeitet?

Was benötigt man zur Naturfotografie, was, wenn man zusätzlich oder alternativ auch noch auf gutem Niveau filmen möchte? Was ist grundsätzlich wichtiger: Das Equipment oder das Bild, das zuvor im Kopf des Fotografen oder Filmers entsteht? Muss taugliches Equipment immer ultra-teuer sein? Welche Software eignet sich am besten zum Editieren? Was genügt dabei den Ansprüchen von Anfängern, was benötigen Fortgeschrittene und Profis? Wie filme oder fotografiere ich draußen in der Natur? Wie hole ich stattdessen die Natur in mein Fotostudio und inszeniere sie dort so, dass es aussieht, als habe man im Freien gearbeitet?

Dies sind alles mögliche Themen, die in meinem Unterricht, meinen Kursen oder Vorträgen vertieft werden können. Beliebige weitere Fragestellungen aus den Bereichen Naturkunde, Biologie, Ökologie und Evolution arbeite ich gerne für Sie aus.

I offer lessons, remedial courses, lectures and advanced training courses on the subjects of natural history, nature conservation, biodiversity, ecology, climate protection and evolution, as well as lessons or lectures on nature photography or nature filming. All this either on a fee basis or via employment. Please see my menu item on the subject of teaching for further information. Of course, I have proofs of qualifications for my various previous teaching activities as well as my professional competence. Please also note my menu item Curriculum Vitae. 

But what are my topics? In the following you will find interesting questions from my areas of competence:

What is an ecosystem? Which ecosystems have been well studied and which not? How well do you know the biodiversity of micro habitats in Germany and what is known about their biological (ecological) relationships? What is actually a species, what are sibling species, and what is meant by a species complex (cryptic species group)? Is the extinction of species a normal part of evolution or is the extinction of a species always an alarming indicator of a (possibly human-made) natural disaster? How many species from all groups of organisms worldwide do we know, and roughly how many do we not yet know? Why do we still not know many species, even in Germany? How do we recognize new species and how is a so-called species description structured? Are humans an animal species, and if so, where do they belong in the animal tree?

Why are a forest, a pond or a meadow places for interesting discoveries, especially for children? What lives there and how is it adapted to its habitat? What do different species actually have to do with each other in such habitats? And what is the best way to observe animal behavior? How can you document it meaningfully so that you can later share your knowledge with friends or via social networks? 

How does the global warming come about? How can we prove its existence? Why is it largely human-made? And what are the effects of global warming and the exploitation of natural resources (energy stores, raw materials such as tropical wood) on the future of humanity and biodiversity on our planet? What exits to avoid emergency situations are we hoping for? What are scientists currently working on to ensure a healthy human future? 

What do we need for nature photography, what if we also want to film at a good level in addition or as an alternative? What is fundamentally more important: the equipment or the image that is created in the head of the photographer or filmmaker? Does suitable equipment always have to be ultra-expensive? Which software is best for editing? What meets the requirements of beginners, what do advanced and professionals need? How do we film or take photos outdoors in nature? Instead, how do we bring nature into our photo studio and stage it there in such a way that it looks as if we were working outdoors? 

These are all possible topics that can be deepened in my teaching, courses or lectures. I would be happy to work out any other questions from the fields of natural history, biology, ecology and evolution for you. 



all copyrights Stefan F. Wirth Berlin 2022

Two different forms of cryptic species-complexes in mites of the Histiostomatidae (Astigmata) from bank mud and bark beetle-galleries and their significance for applied biodiversity research

Biologe ISSN 2750-4158

Stefan F. Wirth, acarologist, freelancer, Berlin, Germany

Citation: WIRTH S. F. (2021): Two different forms of cryptic species-complexes in mites of the Histiostomatidae (Astigmata) from bank mud and bark beetle-galleries and their significance for applied biodiversity research. Biologe (ed. Stefan F. Wirth), category : original scientific papers volume 1 (2021; 2022) , 1-7. URL: https://biologe.wordpress.com/2021/12/31/two-different-forms-of-cryptic-species-complexes-in-mites-of-the-histiostomatidae-astigmata-from-bank-mud-and-bark-beetle-galleries-and-their-significance-for-applied-biodiversity-research

Abstract

In biodiversity research, knowledge of species numbers is the basis for planning environmental protection and climate research. However, the taxonomic work is made more difficult by cryptic species complexes in the world of organisms. Careless determinations of similar species must be prevented. For a beter understanding, examples from different animal groups are given. Using two species complexes of the mite taxon Histiostomatidae (Astigmata), two different forms of cryptic species complexes are presented in detail. Based on three species from a group associated with bark beetles, an example of a species complex is presented in detail, in which all stages of development look confusingly similar to one another. On the other hand, four species of mites from the bank mud of standing waters can only be confused with one another on the basis of their phoretic dispersal stage (deutonymph), while the adults differ distinctly. The meaning of such species complexes is discussed in the evolutionary and applied context. It is critically pointed out that too few specialists are funded worldwide and few taxonomists have to work too quickly, so that there is a risk of cryptic groups of species not being taken into account in surveys.


Keywords: cryptic species groups, evolution, biodiversity research, Acariformes, Histiostomatidae, Astigmata, phoresy, Histiostoma piceae, Histiostoma Scheucherae, Histiostoma piceae, Histiostoma ulmi, Histiostoma palustre, Histiostoma litorale, male morphology, SEM, Histiostoma maritimum, Scolytinae, Carabidae, sapropel


Introduction


Biodiversity research is an essential fundament for disciplines like climate research and climate changes and thus contributes to an understanding about, how we humans need to treat our own environments. A main aspect of biodiversity research besides species monitoring is the evaluation of how many species we have. Specialists need to recognize and scientifically describe new species, especially, when it for example comes out that a complex of very similiar species contains more species than expected before (e.g. Laska et al. 2018). In tendency researchers in the field of biodiversity focus most on vertebrates in temperate regions and generally less in invertebrates (Titley et al. (2017).

The number of recently existing species in numerous cases is still unknown, especially in taxa of small organisms, such as mites. Due to a lack of specialists and due to a lack of fundamental research fundings, relatively much is known about direct pests of human sources, such as Varroa or Tetranychidae mites. But within the major clade Acariformes, ecological contexts and numbers and distribution of species of some free living taxa of Prostigmata and Oribatida/Astigmata are still an open field, even in Central Europe, e. g. Germany (Wirth, 2004).

This is despite the fact that for example phoretic mites, which use other arthropods as carriers for dispersal, can have highly complex relationships with their phoretic hosts, thus being of interest from the evolutionary, the ecological and even an applied point of view. The latter is discussed for example in context with different bark beetles, which their mites might affect by acting as vectors for fungus spores (Klimov & Khaustov, 2018).

Cryptic species complexes are a topic that is currently being widely dealt with in science. Such species complexes are characterized by the fact that they are difficult or impossible to distinguish morphologically. However, they can be clearly differentiated from one another using barcoding (e.g. Kameda et al, 2007), behavioral or ecological studies. Crossing experiments are a frequently used ecological method. Because according to the biological species concept, individuals of different species either cannot be crossed with one another or the offspring of such a hybridization is not fertile (e.g. Sudhaus & Kiontke, 2007).

Crossing experiments are particularly suitable for the investigation of cryptic species complexes in species that have a rapid life cycle and, due to their small size, can be accommodated well in standardized conditions. Such organisms are, for example, free-living nematodes of the Rhabditidae (e. g. Sudhaus & Kiontke, 2007) or mites of the Histiostomatidae (e.g. Wirth, 2004).

The cryptospecies phenomenon, which means that closer investigations show that animals once attributed to the same species actually represent several species, can in principle occur in the entire animal kingdom and in plants and fungi too (Shneyer & Kotseruba, 2015). Previously known subspecies are often given their own species status as a result. One example are the two monitor lizard species Varanus niloticus and V. ornatus (e. g. Böhme & Ziegler, 2004).

In this monitor lizard research mainly ecological differences to V. niloticus have been studied. As one of the results, V. ornatus does not have a diapause in summer, which is a distinct difference to V. niloticus (Böhme & Ziegler, 2004).
As an unusual phenomenon, a case of parthenogenesis was even observed in V. ornatus, but not in V. niloticus (Hennessy, 2010) so far. However, morphological differences between these two monitor lizards were known even before, for example relating to aspects of the dorsal drawing. But the authors named above were able to provide evidence that these morphological differences do not occur gradually, as orgininally assumed, but rather distinctly.

Another example of two sibling species (the most simple form of cryptic groups) that have been identified as different species by molecular biological studies are Homo sapiens and H. neanderthalensis (e.g. Prüfer et al., 2014). Originally it was assumed that H. neanderthalensis was a subspecies of H. sapiens. This is for example supported by the proven cultural exchange between the two species and the great morphological similarity. In the meantime, however, morphological findings such as the morphology of the nasal duct of the Neanderthal man have also supported the genetic findings (Márquez et al., 2014). However, very recent studies show that Neanderthal genetics have entered the lines of H. sapiens (Hajdinjak er al., 2021). As a result, both forms have crossed and produced fertile offspring. It remains to be seen whether this will possibly dismiss the concept of two species again.

Since the aim of all studies of cryptic species complexes is to find distinctive differences in the areas of morphology, ecology or barcoding (or all approaches together) that distinguish one species from all others, ultimately clearly definable, very closely related species remain in case of successful studies.

If the cryptic organisms are members of an organism-socialization, such as parasites and their hosts, the idea that a proven host specificity can be an indicator for a certain species of a cryptic complex is obvious. In fact, Wirth et al. (2016) for example postulated a host specificity for the phoretic mite Histiostoma piceae and its hosts, the bark beetles Ips typographus and I. cembrae. Nevertheless, relationships between associated species are usually not studied extensively enough to be able to unequivocally identify certain species on the basis of for example their hosts (Wirth, 2004).

Since cryptic species represent nevertheless separate species despite their extraordinary similarity, they are subject to the species concepts. As a result, they form different niches and can therefore appear sympatric in the same living space (e. g. McBride et al., 2009). This makes it difficult for biodiversity researchers and systematics to investigate the real numbers of species in such habitats.

If, instead, cryptic species are not sympatric, but distributed in adjacent areas, this can for example indicate that an allopatric species formation has either not been completed for a long time or is even still in the process of speciation (e. g. Gollmann, 1984).

Animal species that have different developmental stages can appear cryptic, i.e.  being morphologically confusingly similar, with regard to all these developmental stages, such as for example certain phoretic free-living nematodes, which then additionally have to be studied ecologically or genetically (e. g. Derycke et al. 2008).

Other species can hardly be distinguished morphologically with regard to a certain developmental stage, which is particularly common, but differ distinctly in other developmental stages, which are more difficult to find. Very similar looking lepidopteran caterpillars of sibling species (e. g. Scheffers et al. 2012) can be more commonly available than their adults, which might be easier to distinguish.

As a specialist for mites of the family Histiostomatidae (Astigmata, Acariformes) I will in my further argumentation refer to my biodiversity studies on these mites and explain the difficult situation for describers of new species based on several specific histiostomatid species, some being phoretically associated with bark beetles and others associated with different coleopterans from muddy sapropel-habitats around ponds in Berlin/Germany.
In connection with these cryptic groups of species, reference should be made to the applied difficulties in connection with biodiversity research. I am referring to the fact that, for a variety of reasons, often only a certain juvenile stage (deutonymph) is used for species descriptions (e. g. Klimov & Khaustov, 2018 B), although cryptic species can occur sympatricly in the same habitat and in many cases not be sufficiently differentiated from one another on the basis of just this one stage.

In Histiostomatidae as in most Astigmata taxa, the deutonymph (in older publications hypopus) represents the phoront, being adapted morphologically and behaviorally in getting dispersed by insects or other arthropods. This instar has no functional mouth, possesses a ventral suckerplate to attach to its carriers and a thicker sclerotization against dehydration. The deutonymph is often collected together with its phoretic host. Bark beetle traps are for example a common source, where dead deutonymphs still on their hosts come from and are subsequently forwarded to acarologists, who then are of course unable to create a mite culture in order to have also adult instars available for species descriptions  (e. g. Klimov & Khaustov, 2018 B) and other taxonomic purposes. This paper shall clarify, why it is instead necessary for a clear species determination to have the deutonymph and additionally at least adults available.

In this publication two cryptic species complexes from the taxon Histiostomatidae (Astigmata) are presented as result of my original scientific work. On the one hand morphologically very similar representatives of the Histiostoma piceae-group, which are originally associated with bark beetles (Scolytinae), on the other hand similar looking representatives, which are bound to insects in the area of ​​the banks of ponds with digested sludge (sapropel). It needs to be emphasized in that context that those herewith introduced two cryptic clades are phylogenetically not closer related to each other.

The presented bark beetle mites (chapter 1 in results) can only be distinguished morphologically by very gradual characteristics, in terms of phoretic deutonymphs as well as in terms of adults. However, there is a tendency towards host specificity (e.g. Scheucher, 1957), which is why there could be a permanent spatial separation of the species despite common occurrence in the same region.

The mites from the sapropel in the area of ​​the pond banks (chapter 2 in results) are presented on the basis of a certain area in Berlin (Germany), where they appeared sympatric. Unlike the bark beetle mites, they are morphologically clearly distinguishable with regard to the adults, but have morphologically very similar deutonymphs, which essentially only differ from one another in degrees.

Based on the representatives of two different cryptic species groups presented in this work, it should be shown that a sufficient range of morphological features for systematic and taxonomic differentiation and characterization of species can only be available if at least two developmental stages of a population can be studied. It is also pointed out that high-resolution optical methods can uncover a possibly systematically relevant variety of morphological features that would otherwise remain hidden. It is suggested that a suspected host specificity cannot always be used to differentiate between very similar species and that cryptic species can be found sympatricly on the same host as well as in the same habitat. The main aim is to show that there is a risk of confusion and a risk of underestimating the existing biodiversity if only the deutonymph is used for taxonomic purposes, just because it is for example easily available, when the host is captured. Nevertheless species descriptions based only on the deutonymphs are unfortunately still surprisingly common.

Due to the lack of sufficient research fundings and a corresponding decrease of experienced specialists, trends to remarkably simplify determinations and species descriptions are about to manifest themselves. Non specialists or less experienced acarologists increasingly try to recognize or describe new species based on the availability of deutonymphs only, because these phoronts are often easily accessible as bycatch of entomological material. It is mistakenly assumed that faster procedures could accelerate the level of scientific knowledge about the biodiversity of astigmatid mites (Wirth, 2004).


Material and Methods


Chapter 1 is an illustration of the current state of my research about a cryptic bark beetle-associated group of species. Problems and questions are additionally shown both on the basis of existing, in part own, literature. Chapter 2 is about four species of Histiostomatidae that were recorded from an old gavelpit area in the urban Berlin forest Grunewald, named „Im Jagen 86“, located 52° 29′ N, 13° 14′ E. This chapter focuses specifically on Histiostoma maritimum, collected between 2002 and 2012 (and also between 1999 and 2000 during my diploma thesis). Besides H. maritimum three other species were found in the same area and habitat: Histiostoma palustre, collected once via deutonymphs from a beetle of Genus Cercyon in 2002 and reared in culture over about two years on moist decomposing potato pieces, Histiostoma litorale, isolated as adults from sapropel mud once in 2002 and Histiostoma n. sp., reared only one generation long from adults to adults in 2019, inside sapropel-mud samples with moss growth and moist decomposing potato pieces.

Mites of H. maritimum were collected as deutonymphs on the beetles Heterocerus fenestratus (rarer on Heterocerus fusculus) and Elaphrus cupreus from sapropel around two ponds in the named area. After different experiments, mites developed successfully on beetle cadavers on 1.5 % water agar in Petri dishes (diameter 5 cm) at room temperature (ca 20°C, summer 2002). Three cultures (one cadaver of C. elaphrus and twice each time two cadavers of H. fenestratus) were observed over a period of about three weeks (additionally small pieces of beef heart were added to all these cultures to maintain suitable food sources). Adult mites were stored in 80 % ethanol for about 5 days and then critical point dried for SEM studies. Photos were taken by an analogous medium size camera via a Philips SEM 515 and later developed. Still unpublished copies from 2002 were scanned in a high 600 dpi solution and as tiffs via a CanoScan Lide 2010 in 2021. Restauration and picture quality improvement were performed via Adobe Lightroom. The areal panorama of the former multiple pond area was captured in September 2018 via a Dji Mavic Pro drone at a height between 30 and 50 m and subsequently modified into black and white.

Setal nomenclature follows Griffiths et al. (1990).



Results:

Seiten: 1 2 3 4 5 6 7

Ant Lasius fuliginosus: Winged alates and insect/mite nest cohabitants

Ants usually reproduce via mating flights. So also the black wood ant Lasius fuliginosus, whose nest I discovered in the Berlin urban park „Rehberge“, where it was (and is) located in the depth under a spruce tree stump. I filmed them under favorable (climatic) for mating flights.

In some cases workers needed to force them to stay out. This behavior is well visible in my film.

Do ants live alone inside their nests? No, not at all. Numerous non-ant-organisms are adapted in living with them, using all kinds of tricks to be not attacked by the ant workers. A known example is the beetle Amphiotis marginata. Where do they reproduce, where does the offspring lives and develops? Semingly according to science and researcher Prof. B. Hölldobler still partly unknown. I also cannot contribute much. But: An undetermined larva of the same family, Nitidulidae, was found to be active under fruit bodies of the fungus Trametes versicolor on the nest top, adjacent to a beetle pupa (not known, whether the same species or family). When exposed to the ant trail near the fungus, the nitidulid larva was attacked, but not caught and was seemingly sufficiently defensive without a visible activity, thus may be chemically. The behavior is visible in my footage. The pupa in contrary was caught and carried away by the ant workers.

Numerous other insects, many mite species and nematodes inhabit ant nests. But some might just occasionally get in contact with a „suddenly“ forming ant nest colony, being remnants may be from former conditions, and nevertheless persist the passing ants on their crowded trails. Two species of mites of the Astigmata seemed to belong to that kind of cohabitants.

According to the visible different galleries of bark attacking insects, it is assumed that this was the way, how these mites came to their place on the inside of the (still partly well intact being) bark of the spruce stump, may be indicating that it was not too long ago felled down. Most conspicuous were the irregular shaped galleries of the bark beetle Dryocoetes autographus (Scolytinae), partly still equipped with remnants of dead beetle individuals. As typical secondary bark infesting insect, this beetle prefers harmed or dead wood. And might have been there already before or while the ant nest grew.

Film about ant Lasius fuliginosus in a park in Berlin with nest cohabitants, 2020, all copyrights Stefan F. Wirth

The mites were found free or attached to a wood insect on: the inside of the bark, which the ants use as major trail to access their main nest in the depth, means much ant fluctuation. But there was no clear indication for a direct phoretic interaction with the ants, because species one was only found as one deutonymph attached to another insect host, species 2 in different instars, rather no further ant-transport necessary.

Species one: a deutonymph on an undetermined beetle larva, later isolated and filmed via light microscope in motion. Seemingly belonging to Acaridae. Species two: two or three free deutonymphs and two tritonymphs close to bark beetle remnants, being Histiostomatidae, seemingly Histiostoma dryocoeti Scheucher, 1957. Due to the filming activities and the few mites, no slides were prepared, determinations are based on light microscopic footage and photos of living (thus not cleared) individuals. Scheucher’s description is bad and lacks juveniles, males and the female’s dorsum, the deutonymph’s drawing is almost sketch-like. Already for that reason, I determine my mites as Histiostoma cf. dryocoeti. being determined basically based on the deutonymph. Also because I could not see all important deutonymphal details, but the shape (smurf-house-roof-shaped, dorsal view) of the proterosoma, the entire body proportions, the pattern of dorsal setae (as far as visible on the photos) and especially their shape (like typically for bark-beetle-histiostomatids more or less directed forewards, but distinctly shorter than normally) as well as the leg shapes (distal end similar to Scheucher’s drawings) and the rather small rounded suckerplate and the short palposoma (ending with or before dorsal proterosoma) fit more or less to her description. The seemingly corresponding tritonymphs were not described by her, but according to my research fit at least to bark-beetle-species (dorsal structures). But paired posterior elongations are visible and might (not necessarily) indicate similar structures in adult females too, while Scheucher doesn’t show the female dorsum at all and just writes „no special features existing“ about it. Thus the tritonymphal morphology forces me to name the species with „cf.“ even more. The tritonymphal mouthparts (palparmembrane) seemingly show lateral elongations (almost fitting to Scheucher’s description).

I filmed on one day directly on the nest, mites were recorded the same day and subsequent days (end May, beginning June)at home using a light microscope with upper light and a stereo microscope.

Berlin, December 2020, copyrights Stefan F. Wirth

Eudicella colmanti – Mating behavior of a colorful beetle

Rose chafers represent a group of colorful beetles, which taxonomically belong to the Scarabaeidae and thus are relatives of famous beetles such as Scarabaeus sacer, well known for rolling dung into balls and for being an important symbol for creation and the rising sun in the ancient Egyptian world. Even the stag beetles are more distant relatives of rose chafers.

 

Colorful and active during daytime

 

Unlike some related beetle clades, rose chafers are usually active during the day. This is also indicated by their very colorful bodies. Colors in insects can have different functions, but they usually all are optical signals, which require a visibility in the sun light. Greenish colors are common in rose chafer species and might have optical inner specific signal functions, but also might support an optical camouflage. This would also make sense in the preferred habitats of the adult beetles, which usually feed on softer parts of blossoms and on their pollen. But they also feed on fruits, whereby mostly liquids are incorporated as the chewing mouthparts are not very well developed.

 

Tropical rose chafer Eudicella colmanti during its copulation behavior, 4K videography, copyrights Stefan F. Wirth.

 

Tropical rose chafers from African countries

 

About 3000 species of rose chafers are known, of which most inhabit the tropical zones. The about 20 species of the genus Eudicella are more or less restricted to the African continent.

Eudicella colmanti is native to Gabun, Kamerun and Kongo, thus a species with a main distribution in Central Africa. But E. colmanti is like other species of this genus worldwide often kept in terraria, although species like E. smithi are more common inhabitants of this kind of artificial habitats. They all can be more or less easily reared.

 

Specific flying mode and copulation behavior

 

This is why I was able to study behavioral characters in detail. And rose chafers indeed show interesting behaviors. They for example perform a unique way of flying. It is a specific character of rose chafers (a so called apomorphy) that they fly with closed fore wings, which cannot be opened as in other beetles.

I documented in my video the mating behavior of a beetle couple. Interestingly this was not too difficult, although both genders can, when separated from each other, react to disturbances with a high agility.

 

Almost permanent copulation activities

 

But in the copulatory position, they accepted to be removed from their terrarium to the filming set and even stayed in position, when they were enlighted from different positions with very bright light beams. Please note the the female, which I observed regularly actively searching for a position underneath the male (behavior not clearly visible in my footage). But it also conspicuously never stopped feeding (on an apple) during the copulatory process (very well visible in my footage), obviously to obtain enough nutrients for the production of eggs. A copulation in my couple is not a unique event, but is repeated regularly and can take hours.

 

Phoretic mites

 

Both genders carried bigger numbers of mites. These were phoretic deutonymphs of the taxon Astigmata (Acariformes, Acaridae). As never determined the mite species, as it was not clear, whether it represented a natural associate of these tropical beetles, or whether it was a species native to Germany, which for example was carried into the terrarium via Drosophila flies.

Copyrights Stefan F. Wirth, Berlin March 2017/ February 2019

A scarab beetle’s larva and pupa: habitats for mites and other organisms

The micro-world is complex. Its habitats intertwine themselves, some even are unusual, because they are formed by single animal individuals. An example is a holometabolic insect, here the tropical rose chafer Eudicella colmanti. The larvae of my specimens are covered with deutonymphs of an astigmatid mite (Acaridae, eventually Acarus sp.).

This makes the beetle larva to a habitat for these mites, although the mites in this case don’t feed or reproduce there. They instead are „only“ passengers on their transportation to a new „real“ habitat, where they become adult, feed and reproduce. This strategy to be carried by other organisms from one living place to another is called phoresy.

The situation in my terrarium might be artificial in the sense that mites are putatively not of tropical origin as the beetles (reared in Germany) and thus do not originally „belong“ to the beetle species. The mites might have reached into the terrarium via fruit flies or similar native organisms or via the terraria of the online shop, where they were bought. But the mite deutonymphs show a distinct affinity for adult beetles and their larvae nevertheless, which they attached in great numbers (not the pupa). The microscopic footage of the mite deutonymphs contains activities of their genital openings, located close to the sucker plates on their undersides.

They occasionally open and close and discharge secretions or water. This might be due to osmoregulation and/or in order to prove the adjacent sucking structure with moisture for a more stable hold.

The larva after some months built its pupa chamber, consisting of soil particles and larva secretions. Tese pupa chambers offer on their outer sides obviously enough nutrients for collembolans, which appeared there in greater numbers, especially on an older chambers with its pupa waiting to hatch. Mites of the Gamasida and tiny annelids could also be observed there. The video consists of macro fotage and microscopic footage, all recorded in 4K and rendered in an uncompressed quality.

 

Berlin, December 2017/November 2018, copyrights Stefan F. Wirth