biologe

Just another WordPress.com site

Tag: ecology

Berlin: Arthropod diversity in 2020 (Corona year)

I documented my nature excursions in 2020 via photography and videography with a special focus to animal macros (outside in the field) and to drone flights. There is also an underwater scenery existing. Most footage was recorded in the area between villages Lübars and Rosenthal in Northern Berlin, close to the nature refuge „Tegeler Fliess“.

The area is characterized by fields, meadows and forest parts and lays along the former GDR wall, today being a hiking and biking trail. Due to a connected mosaic of different ecological habitats, a remarkable biodiversity can there be found, even despite of the worldwide species‘ extinction based on a mostly human made global warming.

My videographic review of the second part of the Corona-year 2020, focussed on arthropod life on meadows in Northern Berlin, all copyrights Stefan F. Wirth

Some few sequences were recorded in other parts of the green city Berlin, namely in the park of the Charlottenburg Palace (beginning sequences of the video) and in urban park Rehberge und Plötzensee (the leaf beetle Galeruca tanaceti in Plötzensee and the scarabaeid beetle – systematically related to genus Cremastocheilus- in Rehberge). Crematocheilus (Cetoniinae) is a genus of myrmecophilous beetles. My individuals were not yet determined, Their existence in Berlin might be even of scientific interest. As putative phoretic vector (to carry mites for their dispersal), they are at least of interest for me, although the studied three beetle individuals did not carry mites at all. The beetles were all found in front of an ant nest intrance (Lasius niger) along the roots of an oak tree in park Rehberge.

As my scientific/ photographic/ videographic excursions happened in exactly that year, 2020, in which the normal human life came worldwide totally out of order based on the covid-19 pandemic, I decided to add this topic to the concept of my video. The video presents nature footage from my visit in the correct seasonal order, beginning with May and June, followed by July, then September/October. In front of each of those months-blocks, I added at that time some important recent news headlines about the corona-pandemic. I named these written parts „corona calendar“. The few December sequences are only dedicated to human street life, showing Berlin in the total lockdown phase, being filmed in black and white (with red recognition).

Berlin, 2 January 2021, all copyrights Stefan F. Wirth

Copulation details of snail Cornu aspersum (4K)

I collected two specimens of the land snail Cornu aspersum from an old olive grove in the city Sorrento (Gulf of Naples, Italy) in April 2019. The land molluscs could be found in that spring season in and under flat stones and smaller rocks. They shared this habitat with bgger diplopodes of genus Julidae and the harvestman Trogulus tingiformis.

The snails are until today successfully kept in a terrarium with sufficient moisture and regular food consisting of vegetable pieces. They share the terrarium with some specimens of diplopods from the original location in Italy.

Cornu aspersum mating, film made in Berlin, all copyrights Stefan F. Wirth

The snails go in a strict diapause several times a year for weeks or months, when temperatures in Berlin grow over 20°C . After getting active again on a colder period, they often quite immediately begin to mate. My video only focuses on details of such mating procedures, especially the spermatheca transfer. I decided to cut as less as possible and to present longer sequences of copulation activities, as they have due to slow slime exchange movements and rhythmical motions a special aesthetics. I additionally intended to show that scientific behavioral studies generally require patience and time as well as interest and fascination for aspects of life.

Cornu aspersum mates reciprocally, which means that both partners transfer a sperm package and produce ovules. The mating of my footage was successful (not visible in my video), and about 20-30 young snails hatched after about 2.5 weeks after egg deposition.

Aspects of mating and copulation in Cornu aspersum are quite well scientifically studied. For example: the variation in spermathecal morphology does not depend on the sperm competition intensity in populations (E. Koemtzopoulos & A. Staikou (Zoology 110 (2), 139-146, 2007); aspects of courtship and copulation were studied by S. A. Adamo and R. Chase (Canadian Journal of Zoology 66(6): 1446-1453, 2011). According to the latter authors the typical mating behavior has a duration of about 421.8 minutes and consists of three major parts: introductory behavior, dart shooting and copulation. My video concentrates only on part 3.

Berlin August 2019 – 10 June 2020, copyrights Stefan F. Wirth

Ant cricket and beetle Amphotis marginata in a nest of Lasius fuliginosus

The ant Lasius fuliginosus builts its nests into wooden environments, for example tree stumps. In the depth it is shaped by a carton-like substance, produced by the ants and with a „domesticated“ fungus involved. When ant workers leave the nests on trails, marked with pheromones, they might seek for food (mostly aphid secretions) in distances up to 30 meters. In the area around the nest, so called foraging trails are especially busy, as different kinds of foraging substances need to be carried in, in order to feed the fungus, in order to create new cartonage and in order to feed queen, nest mates and offspring.

Such a foraging trail is of course a very attractive place for invaders (non ant species) to either capture some food from the workers on their ways into the nest, or even to attach to these workers to get a ride inside the nest too, interesting for brood parasites for example, but also for all kinds of organisms, which prefer nest micro climatic conditions and want to be additionally secured or at least tolerated by the ants. All these organisms, such as insects, mites or nematodes, even pseudoscorpions, need to have specific adaptations in order to be not attacked by the ants.

Film about nest cohabitants of Lasius fuliginosus, Berlin 2020, copyrights Stefan F. Wirth

Three examples are presented in my video. The ant cricket Myrmecophilus acervorum is a common inhabitant of different ant species. Here I found it while „walking in row and order with the ants“. That unusual tiny cricket is assumed to be able to adopt the „smell“ of a nest, which is why ant workers accept it around them. I discovered the specimen of my footage in a later afternoon (around 18:00 in May 2020) directly on top of the tree stump, in which the nest is hidden (in the depth). There it directly followed ants within their foraging walk to the nest entrances. It was directly walking with them in a row and seemed to imitate additionally antennae movements of ants. It after a while left the row of ants (unharmed and without getting a special attention) and went into a hideaway on the side of the tree stump. Generally, there is not much known about the biology of this cricket. There is evidence that it feeds on food and even brood of the ants.

Another ant trail invader is the tiny beetle Amphiotis marginata (Nitidulidae), which performs behaviors, which make its stay inside foraging trails of ants (seemingly associated with Lasius fuliginosus only) even necessary: Hölldobler & Kwapich (2017) had studied this beetle and its behaviors in detail. According to their findings, the beetle shows a complex behavior to beg for food from passing-by antworkers. Movements of its antennae are an important part of such a contact and might in the optimal case lead to a response by the ant to antennate back to the beetle’s head, and subsequently the beetle might be fed as if it were an ant conspecific. The authors describe that a beetle is not always successful. In the best case, hectic ants on their way home might simply oversee the invader (kleptoparasite), in the worst case, they might detect it as a stranger and would then attack it. For protection, the beetle is able to closely adhere to the ground with its claws, while the side edges of its elytrae are shaped downward to the ground. This way, ants are unable to lift such a beetle up and would continue their ways after a while. Hölldobler and Kwapich also mention that they observed cases, in which ants were nevertheless able to lift detected beetles up and then cut their legs off, which means the end of the beetles adventurous life. The beetle specimen in my footage found a bad position aside to an ant path, which was such busy that it was overseen and even unable to approach single workers to beg for food. The authors above found some indications that the beetle’s larvae might develop inside ant nests.

As an acarologist, I am of course interested in mites, which are associated with ant nests. I in detail was involved in research about non-native ants: in the USA (Lousiana) I did research about the leafcutter ant Atta texana and the red imported fire ant Solenopsis invicta, all in cooperation with John C. Moser. I even described a new species of astigmatid mites from S. invicta. I also did some unpublished research on native ants and thus know that also Lasius fuliginosus possesses greater numbers of mite-associates (Parasitiformes and Acariformes). As an example given in this video, we see a rather big mite of the Mesostigmata (Parasitiformes), which I could not determine closer based on my footage. Mesostigmata generally can appear as phoretic organisms (feeding for example on nematodes or mites inside the ant nests, but being carried by ant workers there), they can also invade by themselves and might appear as brood or kleptoparasites. The mite in my footage walked directly on the ant trail without being harmed. It might be like the ant cricket able to adopt ant nest scents to be protected.

Berlin, Plötzensee/ Rehberge, May 2020, copyrights Stefan F. Wirth

Mite Histiostoma piceae

The mite Histiostoma piceae Scheucher, 1957 is a member of the mite family Histiostomatidae (Astigmata, Acariformes). Scheucher discovered the mite based on all instars from spruce, infected by the bark beetle Ips typographus. She collected her samples in Regensburg, Höbing (bei Roth) and Harz. Scheucher reared her specimens on potatoes and bran, but describes that her cultures did grow well only to some degree.

According to her findings,  phoretic carrier (hosts) is the bark beetle species Ips typographus, she also found deutonymphs rarely on some staphylinids. She discovered that free living non-deutonymphal stages develop on fresh detritus, while deutonymphs appear only on old detritus („after it was for a longer time removed from the trees“, „wenn der Mulm einige Zeit aus den Bäumen entfernt ist“). I could like Scheucher culture the mites on potato, but a bit better in their original gallery substrate. Under laboratory conditions, they indeed did not rear very well in both kinds of cultures.

I collected H. piceae between 2000 and 2004 once from a wooden log infested by I. typographus in Berlin, then got access to microscopic slides from Europe in the collection of John C. Moser (Louisiana, USA) in 2007 and 2009, then I collected samples from Ips typographus and I. cembrae in Central Croatia (publication Wirth, Weis and Pernek, 2016) and found out that H. piceae is not restricted to I. typographus, but also to its sibling species I. cembrae. I finally collected the mite from I. typographus galleries between 2015 and 2016 in Western-Siberia near the city Tyumen.

I repeatedly observed deutonymphs of H. piceae under natural conditions (bark samples directly after the excursions) to develop in very high numbers, then attaching to all available arthropods nearby, smaller bark beetle species and numerous bigger mites of different groups, such as for example oribatids.

Published recordings of H. piceae from other bark beetles than I. typographus and I. cembrae are doubtful and need to be named Histiostoma cf. piceae. In some cases with I. typographus additionally present, I interpret the mites to have switched from their regular carrier (host) to an adjacent gallery of e.g. another smaller bark beetle species. In other cases, the existence of similar looking species new to science needs to be tested. In cases of determinations by non specialists from bark beetles other than the above mentioned two beetle species, it needs to be assumed that these people could not differ between similar mite species, such as Histiostoma trichophorum Oudemans, 1912, Histiostoma ulmi Scheucher, 1957 or Histiostoma crypturgi Scheucher, 1957.

 

I never before published the full set of SEM and light microscopic photos from these  times (except of my article about host specificity). In this explicite photo publication here on my homepage, I herewith publish SEM-photographs, objects sputtered with gold, which might be not unique to science, but very rare.

Any subsequent research on this mite in Europe is not happening (a few not too relevant findings are published by a former Russian colleague). Reason is that modern science does not understand, especially not in Germany, that fundamental research in applied fields is worth to be funded. It is for example known that deutonymphs of different mite species on bark beetles regularly carry fungus spores (different fungus species, just sticking on the mite’s cuticle), discovered by John C. Moser and confirmed by several of my own publications. This phenomenon is still not closer studied. Fungus transport into bark beetle galleries can influence the micro climate there.

 

 

Male and female of Histiostoma piceae, A venter of male, B dorsum of male, C mouthparts with Digitus fixus, D dorsum of female, E side-frontal view to female; Berlin 2002-2020, copyrights Stefan F. Wirth

 

hpiceaeimage0498photoshop

Deutonymph of Histiostoma piceae in ventral view, collected in Western Siberia, 2015 – 2016, copyrights Stefan F. Wirth

 

Systematics: Histiostoma piceae is according to my phd thesis from 2004 and according to my more recent research findings a member of a clade (monophylum) within Histiostomatidae with most species associated with bark beetles (Scolytinae) or other bark inhabiting coleopterans; these phylogenetic findings are based on morphological characters.

Mite Histiostoma maritimum

The mite Histiostoma maritimum Oudemans 1914 is a member of the mite family Histiostomatidae (Astigmata, Acariformes). Oudemans discovered the mite based on its deutonymph only from a Dutch island. The German acarologist R. Scheucher found the species in 1957 in mud at the riverside of Regnitz and for the first time could rear H. maritimum and was able to redescribe it by its adult stages, especially females look morphologically conspicuous due to a sclerotized cuticula shield around its copulation opening. She reared her specimens on potatoes, mud and bran, but describes that her cultures did not grow well.

Phoretic carrieres (hosts) are beetles of genus Heterocerus, some carabids and according her findings also rarely some staphylinids.

I discovered H. maritimum between 2000 and 2004 repeatedly in sapropel around ponds in an old gravel pit area in Berlin, forest Grunewald, named „im Jagen 86“. They were mainly attached to the beetles Heterocerus fenestratus and Heterocerus fusculus, but could regularly also be found on the carabids Elaphrus cupreus and Bembidion sp.. I could several times rear the mites, like Scheucher almost unsuccessfully on potatoes, but well on cadavers of their carriers. I thus reconstructed a so called necromenic life-strategy for H. maritium. This means that a phoretic stage ascends a carrier, but never leaves, instead it awaits the carrier’s natural dead to develop on its cadaver (published in my phd thesis, online, 2004).

I will not publish my full set of SEM photos from earlier times here. Some photos will be saved for one of my upcoming paper submissions in scientific and peer-reviewed journals. In this photo publication here on my homepage, I at least publish some interesting SEM-photographs, based on objects sputtered with gold and a subsequent critical-point-drying procedure.

Adults of Histiostoma maritimum: A left male, right female, B, C, copulation opening, D dorsal view to female with mouthparts and copulation opening

Systematics: H. maritimum shares morphological characters of deutonymph (setation, apodemes) and adults (mouthpart details, shape of Digitus fixus) with species like Histiostoma feroniarum, H. insulare, H. litorale, H. palustre, H. polypori, H. myrmicarum. This might indicate a separate clade, but according to the old findings in my phd thesis, also a paraphyletic grouping including these species is thinkable.

Copyrights Stefan F. Wirth, 10 June 2020

Locomotion behavior of Schizomida (Arachnida)

They look without magnification more like very motile and fast running ants or very tiny grasshoppers than like arachnids. But they indeed represent relatives of the web spiders and scorpions: Schizomida, a clade of whip scorpions. They are the sister taxon of Thelyphonida, the rather well known „big whip scorpions“, which are often kept as pets in terraria around the world. Schizomida are only rarely filmed in a higher resolution quality, which is due to their small size and their almost invisibility due to their semi-transparent cuticle and their very fast way of walking or even jumping. They are additionally difficult to be filmed as they strictly avoid all lights and tend to dry out quickly, when they cannot hide themselves by time in a slightly moist substrate.

 

Closeups of behaviors of a Schizomid species from a greenhouse in Germany. Copyrights Stefan F. Wirth

 

Schizomida in Greenhouses

 

Schizomids represent mostly tropical or subtropical organisms. But some species are regularly dispersed into greenhouses around the world. The filmed species might be Stenochrus portoricensis, but was not systematically studied in detail so far. As all known species, which appear in greenhouses, also S. portoricensis reproduces (apart from their original habitats) parthenogenetically with females producing females without mating procedures (thelytoky). I never found males so far.

 

 S. portoricensis: native to subtropical Zones

 

The specimens, which I kept since months in a small terrarium, were collected in autumn 2016 at the famous fun and wellness bath „Tropical Islands“ South of Berlin. There they are a natural part of the world’s biggest indoor rainforest. The species S. portoricensis is originally native to Florida, Mexico, Cuba, Nicaragua, Porto Rico and other localities in similar tropical zones. These microscopical tiny organisms are predators and do not harm human beings at all. According to the available organisms in a suitable size in my terrarium, they might feed on the numerous collembolans and/or mites. Especially mites of the Gamasina appear in greater numbers in my substrate, which represents the original substrate from the greenhouse. I enriched this substrate regularly by smaller pieces of fruits or vegetables to stimulate the growth of microorganisms. I keep them at room temperature (about 20°C) and with not too much moisture. I do not know, whether they reproduced within these months, but the specimens of my recent video footage represent all sub-adults.

 

Film set and topic locomotion

 

Focus of my film is to present the different ways of locomotion, cleaning behaviors and burrowing activities of these fascinating animals. During the filming procedure, I used two cold-light-lamps for a suitable illumination and an ILCE-6300 (internal 4K mode), connected to a stereomicroscope and a lightmicroscope (with uplight).

 

Berlin December 2019/ March 2017, Copyrights Stefan F. Wirth

Drone flights: Worth seeing nature around the fields of Berlin

The metropolis Berlin is the capital of Germany and much more than that. It represents an unusual green city. When using elevated viewpoints to watch the cityshape, then at least in summer visitors of Berlin can receive the impression of being in the midst of a greening huge landscapes with several villages in between.

 

Green areas in Berlin

 

 

Indeed related to other metropolitan cities of the world, Berlin is still partly not very densely populated and covered by remarkable huge natural countryside instead. The area of landing and runway strips of the former airport Tempelhof for example up to date represents the largest coherent green area inside a city worldwide. The so called Tempelhofer Feld was after the termination of the air traffic exposed to renaturation and is currently a very popular recreational park. It’s located in the South of the city.

Also the West and South-West partly represent nature reserve areas and are covered by the big urban forest Grunewald.

 

Meadows and wetlands in the North of Berlin as nature refuges

 

I am since two years discovering the Northern parts of Berlin, which according to my random observations (in comparison with other Berlin areas, such as Tempehofer Feld, Teufelsberg (Grunewald) and some urban parks in the center of the city; examples of species will be visible on my corresponding blog article) bears the greatest biodiversity in bloom visiting insects.

 

 

 

Mosaic of different landscape types close to each other

 

 

 

 

 

This is seemingly due to the complexity of different meadow-, field-, wetland- and bog-habitats, being originally shaped by the Weichselian-glaciers. I regularly visited the stream valley of the so called Tegeler Fließ with the lake Köppchensee. It’s a hilly area with different gradients of sunny slopes with partly Mediterranean climatic conditions, surrounded by different kinds of wetlands. This area is well known for its great biodiversity.

 

Between the villages Rosenthal, Lübars and Blankenfelde

 

But my drone flights present vast tracts in the South of that stream valley, consisting of fields, green meadows and wetlands. It is the area between the Berlin villages Rosenthal, Lübars and Blankenfelde. Inner urban agriculture is rare in metropolian cities worldwide, in Berlin there is only a small agriculture area in the South (Dahlem Dorf) and the fields between the named villages in the North.

 

Drone flights and bloom visiting insects

 

 

Fields and meadows with adjacent forests and wetlands in the North of Berlin, September 2019, copyrights Stefan F. Wirth. Please give my video also your like on Youtube.

 

Most part of the footage in my film represents the fields adjacent to the village Rosenthal. I newly discovered the partly quite tiny meadows between and adjacent to agricultural fields around Rosenthal this summer and discovered an impressive and steadily visible diversity of bloom visiting insects there. Fields as monoculture habitats usually bear a smaller biodiversity related to wild-growing nature zones. But due to the connection of the edges of fields with complex nature refuge zones around, I could observe a quite great number of species on closely adjacent meadows and even the natural border zones of these agricultural areas.

 

Videographic details

 

The footage was captured in 4K and D-cinelike quality using a Mavic 2 Zoom drone between September and October 2019.

 

 

Berlin, September/ October 2019, copyrights Stefan F. Wirth

 

Oribatida mites: Fast runners and slow crawlers

Microhabitats often consist of a complexity of organism species. Under suitable conditions, samples can be kept „alive“ for months and even for years by regularly adding moisture and organic tissue, in case of my sample of this footage: patato pieces.

 

 

Mites of the Oribatida and their different ways of locomotion. Copyrights: Stefan F. Wirth, Berlin April 2019. Please give the video a like on youtube too.

 

Soil samples from island Norderney

 

This soil sample was collected in summer 2018 on the North Sea island Usedom during my participation at the „Geo Tag der Natur“. It contained several specimens of the predatory chilopode Lithobius sp. and pieces of rotting wood, moss and forestground, everything collected under rotting treetrunks and tree branches. The samples additionally contained the carabid beetle Pterosticus cf. niger and ants of genus Lasius. Samples were collected in a small forest area with wetland aspects. The soil quality was rather moist.

 

Astigmatid mites

 

I later added potato pieces and regularly some water droplets to the sample with still living big arthropods/ insects. After some weeks, specimens of the astigmatid mite Acodyledon cf. schmitzi developed on dryer areas of the potato pieces. These mites were presumably phoretic associates of the carabid beetles. They died out after several months, after the sample had dried out a little bit and may be due to changes of the room temperature during winter time.

 

Oribatida

 

Now, almost a year later, the micro habitat is inhabited by mites of the Oribatida in greater numbers of specimens of at least three species: Nothrus sp. (genus not yet clarified), Nothrus palustris (already found for the first time shortly after the sample collection) and a species of Phthiracarida.

 

Locomotion and biodiversity

 

Purpose of the short film is to show different organisms, cultured after about a year in this sample: mites, nematodes, collembolans and microorganisms, fungae and bacteria. Of the bigger arthropods/insects, only one Lithobius species survived until now.  Also the diversity of ways of locomotion in different oribatid species is emphasized: There are slow crawlers (Nothrus) and fast runners (Phthiracarida).

 

Berlin, April 2019, Copyrights Stefan F. Wirth

Late winter insect life: winter aconite blossoms and dipteran visitors

When do the first insect activities in the new year occur? Can insects be active in winter, even in the presence of snow? The answer is generally yes, different insect species even use to appear on warmer winter days on top of snow layers. Examples are the limoniid crane fly Chionea belgica, a wingless dipteran, which can be observed on milder winter days on snow surfaces along forest edges in Central Europe. Also the fly Trichocera hiemalis belongs to the winter crane flies (Trichoceridae) and can be characterized by a very well developed cold resistance. It appears on sunny winter days between branches of leafless trees in swarms around invading sunlight beams.

 

The winter aconite as an early blooming flower and its biology

 

But what about insects, visiting blooming flowers? This requires the existance of early blossoms, which can grow and bloom under winter conditions. A well known example is the winter aconite Eranthis hyemalis, which outlasts the summer period only by its underground tubers. Their conspicuous yellow blossoms belong to the first blooming flowers in the year. In Central Europe, they begin to grow under suitable conditions in mid February. They require milder temperatures, but even persist in case an unusual cold snap would happen. The blossoms open only at sunshine and thus close shortly after sunset. Opening and closing is a growth process, which depends on temperature conditions. Such a phenomenon is called thermonasty.

 

The winter aconite as a neophyte in Germany

 

In Central Europe, such as in Germany, E. hyemalis is a neophyte. It is originally native to Southern European areas, Turkey, South-East-France, Italy, Bulgaria and Hungary.

The species was introduced to Central Europe (and North America) as ornamental plant for gardens. It is proven that it was in Germany already cultivated since the 16th century. The German botanist, nature researcher and medical doctor Joachim Camerarius reared the winter agonite, which he brought from Italy, since 1588 in his backyards.

 

Common pollinating insects

 

Pollinating insects of E. hyemalis are flies, bumblebees and bees. To reach the nectar inside the blossoms requires a proboscis length of about two mm, which is mostly given in bumblebees and bees.

 

Flowerbed in Berlin urban park Schillerpark

 

I documented via my videography (4K) and photography a smaller area of winter aconites in front of a wall at urban park „Schillerpark“ (honoring the German poet Friedrich Schiller) in Berlin. The bright bricks of that wall reflected efficiently the solar warmth and thus created suitable conditions for a late winter flowerbed full of life.

 

Video with winter aconite blossoms and pollunating flies, copyrights Stefan F. Wirth.

 

Most abundant insects in that winter aconite bed

 

DSC03573bestsharpsignatur

Western honey bee, copyrights Stefan F. Wirth

 

The western honey bee Apis mellifera was often seen on blossoms, but unfortunately was not captured via video footage. Our honey bee hibernates in a so called winter clusters with lower temperatures and low activities in workers. Beginning in late winter/ early spring, workers increase the nest temperature due to body movements up to 35°C. This is exactly the body temperature, workers need to fly out and collect first nectar and pollen, for example from the winter agonite.

 

https://www.instagram.com/p/Bt_oaLtF5NH/

Drone fly on blossom of the winter aconite, copyrights Stefan F. Wirth

 

The drone fly Eristalis tenax belongs to the hoverflies (Syrphidae). Their larvae develop in watery environments, where they use their conspicuous snorkel tube to breath air at the water surface. Adults are typical blossom visitors, preferring Asteraceae and Apiaceae. Interesting highlight of their biology is the migratory behavior. These migratory insects form swarms, which cross the Alpes towards Southern European areas by using suitable wind conditions, where they finally hibernate and reproduce. The next generation returns the same way back. Not all individuals participate these migratory flights and would try to hibernate in Central Europe. Hibernating individuals are always females, which were fertilized prior to their winter diapause or their migration and which lay their eggs in the subsequent spring or in southern regions during winter. In Germany they only survive in greater numbers in milder winters, which they persist in temperature-stable hideways, such as gaps inside walls or wooden habitats. These specimen can be usually observed early in the year, beginning with March, when visiting blooming flowers. Their numerous very early appearance in mid February 2019 might be due to a very warm summer 2018 and a subsequent very mild winter in north-eastern Germany (Berlin). I have no comparative findings regarding the usual blooming time of the winter aconite and the abundance of drone flies there for Berlin or even this specific urban park. I also don’t know about indications that due to a global warming, as in some migratory birds, less specimens of the fly would migrate and more stay to hibernate here around.

The research station „Randecker Maar“ in the Swabian Jura records changes in migratory flights of birds and insects. They discovered a distinct decline of numbers of migrating drone flies and interpret it as a result of the increasing application of poisonous substances in the agricultural sector. Whether they additionally consider this being due to more individuals hibernating, where they are, based on generally warmer temperatures (global warming) is unknown to me.

 

https://www.instagram.com/p/BuJB6OiFlRi/

Blow fly on blossom of the winter aconite, copyrights Stefan F. Wirth

 

The blow fly Calliphora vicina is a common blossom visitor in early spring and autumn. This fly, typically appearing in human settlements in Europe and the New World, is well adapted for an activity at lower temperatures (more than 13°C). While larvae develop in decomposing organic tissue (such as cadavers of animals), adults feed on nectar and pollen. They additionally incorprate saps from organic material with a strong odor.

C. vicina produces about five generation per year and throughout the year. The flies can even be active in winter, when temperatures reach a suitable level.

 

Other fly species were existant, but I did not determine them.

 

Time of footage and photo recording

 

Video footage and photos were recorded between 16 and 18 February 2019 in the urban park Schillerpark in Berlin.

 

Copyrights: Stefan F. Wirth, Berlin 2019.

Mite Histiostoma sachsi (Astigmata): Juvenile dispersal instar deutonymph and its orientation behavior

Some animals live in environments, where there is (almost) no light available. It makes no sense to see in the dark, but it is important for a specimen to know, where it actually is, where it is going to, whether there is enough food and what the conspecifics are doing. Predators need to be recognized in time, and a sexual partner must be found. There is also need for an efficient communication between specimens of a species. How can all this be performed by mites of the Astigmata, which usually live inside decomposing soil habitats in a more or less permanent darkness?

 

Olfactory sense organs in mites of the Histiostomatidae

 

Histiostoma sachsi (Histiostomatidae, Astigmata) is such a mite, living inside cow dung or compost. It might have a rudimentary ability for a light perception, but has not visible or functional eyes. It cannot produce any sounds. It can only feel and smell. Seemingly very limited abilities, but the contrary is fact: Due to evolution this mite is perfectly adapted to its life-style. It can feel objects by touching on them using its body setation (= body hairs). And it smells by means of very specialized body hairs, which are called solenidia and appear in different types, shapes and functions. These mites don’t smell on the level of us humans, which would be very insufficient. If at all, it should be compared with a dog. I am always fascinated when seeing blind dogs and how perfectly they can interact with their environment, despite their handicap. That’s may be how the efficiency of olfactory perception abilities of such a mite must be imagined. They do not only perceive scent particles from other animals, plants and soil components. Even olfactory signals from their conspecifics will be correctly and differentiatedly interpreted. And that not only marginally.  Olfactory signals represent indeed the major mode of their intraspecific communication.

 

Chemical communication of mites of the Histiostomatidae

 

Communication always requires contributions from both sides, a signal and an answer. These mites smell the signal of a conspecific using their solenidia, and they answer by the secretion of biochemical components. For these purposes, they possess a huge and complex gland system located on the upperside of their backs. Volatile excretions aggregate inside a big and rounded reservoir and finally leak to the outside via a pore, called oilgland opening. These gland systems are located symmetrically on both sides, each with one reservoir and one pore.

The meaning of the sent volatile message simply depends on the composition of the correspondingbiochemical components. Even diffferent stereochemical configurations of the same molecule can have different meanings. Citral for instance is a major component and has in different stereoisomers different functions. Such cummunicative volatile signals are usually named pheromones. And mites of the Histiostomatidae can indeed produce different kinds of pheromnes via the same gland system. Aggregation pheromones inform specimens about a suitable place to stay together with their conspecifics, for example due to a sufficient amount of food resources. Alarm pheromones solicit mites nearby to flee from an unpleasant situation. Sexual pheromones attract adult partners to each other in order to perform the mating procedure. But the gland secretions can even more. As allomones, they communicate with specimens of other species. They function as defenses against predators or other dangerous cohabitants.

 

Deutonymphs need to find a carrier for dispersal

 

Another form of communicative interspecific interactions is performed by a specific juvenile instar, the deutonymph. It looks morphologically quite different from all other instars (heteromorphic situation), does not need or possess a functional mouth, has a thicker cuticle as protection against drying out and a complex sucker organ on its underside in order to attach itself to an insect or another bigger arthropod. Deutonymphs of the astigmatid mites search for bigger carrier-arthropods to get carried from one habitat to another (dispersal strategy  is calledphoresy). While doing so, they again use their specifically modified leg setation (hairs) on the first pairs of legs to perceive scents for the detection of a suitable and passing by carrier. Basically it is still unknown, whether the term „communication“ is indeed appropriate in this context as we don’t know yet about a mutual interaction between deutonymphs and their carriers, before the phoretic ride begins.

 

 

Olfactory orientation of the deutonymph of Histiostoma sachsi, copyrights Stefan F. Wirth, February 2019.

 

Specific way of walking in deutonymphs

 

In detail, different kinds of behaviors can be observed in deutonymphs, when searching a carrier. The detailed behavioral patterns in this context can slightly differ between even closer related species. Deutonymphs of Histiostoma sachsi as all deutonymphs show a characteristic mode of walking, in which especially the first pair of legs plays an important role. During each step, performed by four pairs of legs, the first legs are lifted up much higher than all other hind legs. While doing so, they slightly tremble up and down. A behavior that mostly supports a better basic orientation inside a „jungle-„micro-landscape, being filled up with soil particles and decomposing plant tissues. But what H. sachsi deutonymphs additionally need in order to find their carriers is repeatedly to rest between the walking activities. Thus the first legs, which normally are still walking legs, are made free and that way available for the perception of carrier-scent-components only. These  namely are the legs that bear the highest densiy of solenidia.

 

Two different behavioral modes for an efficient orientation towards a carrier

 

Two different modes of resting with olfactory searching activities could be observed: In periodic intervals the deutonymph attached to the ground by using its sucking structures. They were then more or less laying on their entire undersides with only their forebodies slightly lifted up. By alternating moving the first legs up and down, olfactory information could be perceived from all directions without having the own body as a barrier to backwards. To improve its orientation situation, the deutonymph additionally turned on its own axis around, being stabilized by its sucking structures, which are flexible enough to follow these movements. When the deutonymph intended to continue its walk, it first needed to detach from the ground, which happened via muscle contractions that caused an abrupt detachment of the corresponding suckers. But main aim of the deutonymph is to find an elevated place, where the probability of a passing by carrier is especially high and from where a bigger insect (or other arthropod) can easier be ascended. There the second behavioral mode was performed. The deutonymph only fixed the edge of its hind body to the ground, again using the suckers on its underside, which are located close to this edge. This time the entire mite body stood in an upright position. The first legs again „waved“ alternating up and down and could under these especially elevated conditions even perceive scents from bigger distances. By occasionally slightly and alternating turning their upright bodies to both sides, olfactory information could be easier detected from all directions.

 

Carrier of H. sachsi still unknown

 

The frequency of such movements in mites increases typically as closer a suitable carrier approaches. But this was not yet observed or documented for Histiostoma sachsi. Its carrier inside the compost substrate is still unknown, which is why I so far could’t perform corresponding experiments. The species‘ describer, Scheucher (1957), found her mite specimens in cow dung and also didn’t identify the corresponding carriers there.

The observations presented in my video are part of my research project about morphologies and behaviors of deutonymphs in the Histiostomatidae.

 

Berlin, February 2019. All copyrights Stefan F. Wirth.