The mite Histiostoma maritimum Oudemans 1914 is a member of the mite family Histiostomatidae (Astigmata, Acariformes). Oudemans discovered the mite based on its deutonymph only from a Dutch island. The German acarologist R. Scheucher found the species in 1957 in mud at the riverside of Regnitz and for the first time could rear H. maritimum and was able to redescribe it by its adult stages, especially females look morphologically conspicuous due to a sclerotized cuticula shield around its copulation opening. She reared her specimens on potatoes, mud and bran, but describes that her cultures did not grow well.
Phoretic carrieres (hosts) are beetles of genus Heterocerus, some carabids and according her findings also rarely some staphylinids.
I discovered H. maritimum between 2000 and 2004 repeatedly in sapropel around ponds in an old gravel pit area in Berlin, forest Grunewald, named „im Jagen 86“. They were mainly attached to the beetles Heterocerus fenestratus and Heterocerus fusculus, but could regularly also be found on the carabids Elaphrus cupreus and Bembidion sp.. I could several times rear the mites, like Scheucher almost unsuccessfully on potatoes, but well on cadavers of their carriers. I thus reconstructed a so called necromenic life-strategy for H. maritium. This means that a phoretic stage ascends a carrier, but never leaves, instead it awaits the carrier’s natural dead to develop on its cadaver (published in my phd thesis, online, 2004).
I will not publish my full set of SEM photos from earlier times here. Some photos will be saved for one of my upcoming paper submissions in scientific and peer-reviewed journals. In this photo publication here on my homepage, I at least publish some interesting SEM-photographs, based on objects sputtered with gold and a subsequent critical-point-drying procedure.
Adults of Histiostoma maritimum: A left male, right female, B, C, copulation opening, D dorsal view to female with mouthparts and copulation opening
Systematics: H. maritimum shares morphological characters of deutonymph (setation, apodemes) and adults (mouthpart details, shape of Digitus fixus) with species like Histiostoma feroniarum, H. insulare, H. litorale, H. palustre, H. polypori, H. myrmicarum. This might indicate a separate clade, but according to the old findings in my phd thesis, also a paraphyletic grouping including these species is thinkable.
Rose chafers represent a group of colorful beetles, which taxonomically belong to the Scarabaeidae and thus are relatives of famous beetles such as Scarabaeus sacer, well known for rolling dung into balls and for being an important symbol for creation and the rising sun in the ancient Egyptian world. Even the stag beetles are more distant relatives of rose chafers.
Colorful and active during daytime
Unlike some related beetle clades, rose chafers are usually active during the day. This is also indicated by their very colorful bodies. Colors in insects can have different functions, but they usually all are optical signals, which require a visibility in the sun light. Greenish colors are common in rose chafer species and might have optical inner specific signal functions, but also might support an optical camouflage. This would also make sense in the preferred habitats of the adult beetles, which usually feed on softer parts of blossoms and on their pollen. But they also feed on fruits, whereby mostly liquids are incorporated as the chewing mouthparts are not very well developed.
Tropical rose chafer Eudicella colmanti during its copulation behavior, 4K videography, copyrights Stefan F. Wirth.
Tropical rose chafers from African countries
About 3000 species of rose chafers are known, of which most inhabit the tropical zones. The about 20 species of the genus Eudicella are more or less restricted to the African continent.
Eudicella colmanti is native to Gabun, Kamerun and Kongo, thus a species with a main distribution in Central Africa. But E. colmanti is like other species of this genus worldwide often kept in terraria, although species like E. smithi are more common inhabitants of this kind of artificial habitats. They all can be more or less easily reared.
Specific flying mode and copulation behavior
This is why I was able to study behavioral characters in detail. And rose chafers indeed show interesting behaviors. They for example perform a unique way of flying. It is a specific character of rose chafers (a so called apomorphy) that they fly with closed fore wings, which cannot be opened as in other beetles.
I documented in my video the mating behavior of a beetle couple. Interestingly this was not too difficult, although both genders can, when separated from each other, react to disturbances with a high agility.
Almost permanent copulation activities
But in the copulatory position, they accepted to be removed from their terrarium to the filming set and even stayed in position, when they were enlighted from different positions with very bright light beams. Please note the the female, which I observed regularly actively searching for a position underneath the male (behavior not clearly visible in my footage). But it also conspicuously never stopped feeding (on an apple) during the copulatory process (very well visible in my footage), obviously to obtain enough nutrients for the production of eggs. A copulation in my couple is not a unique event, but is repeated regularly and can take hours.
Phoretic mites
Both genders carried bigger numbers of mites. These were phoretic deutonymphs of the taxon Astigmata (Acariformes, Acaridae). As never determined the mite species, as it was not clear, whether it represented a natural associate of these tropical beetles, or whether it was a species native to Germany, which for example was carried into the terrarium via Drosophila flies.
Copyrights Stefan F. Wirth, Berlin March 2017/ February 2019