biologe

Blog and online journal with editorial content about science, art and nature.

Tag: Oribatida

Oribatida mites: Fast runners and slow crawlers

Microhabitats often consist of a complexity of organism species. Under suitable conditions, samples can be kept „alive“ for months and even for years by regularly adding moisture and organic tissue, in case of my sample of this footage: patato pieces.

 

 

Mites of the Oribatida and their different ways of locomotion. Copyrights: Stefan F. Wirth, Berlin April 2019. Please give the video a like on youtube too.

 

Soil samples from island Norderney

 

This soil sample was collected in summer 2018 on the North Sea island Usedom during my participation at the „Geo Tag der Natur“. It contained several specimens of the predatory chilopode Lithobius sp. and pieces of rotting wood, moss and forestground, everything collected under rotting treetrunks and tree branches. The samples additionally contained the carabid beetle Pterosticus cf. niger and ants of genus Lasius. Samples were collected in a small forest area with wetland aspects. The soil quality was rather moist.

 

Astigmatid mites

 

I later added potato pieces and regularly some water droplets to the sample with still living big arthropods/ insects. After some weeks, specimens of the astigmatid mite Acodyledon cf. schmitzi developed on dryer areas of the potato pieces. These mites were presumably phoretic associates of the carabid beetles. They died out after several months, after the sample had dried out a little bit and may be due to changes of the room temperature during winter time.

 

Oribatida

 

Now, almost a year later, the micro habitat is inhabited by mites of the Oribatida in greater numbers of specimens of at least three species: Nothrus sp. (genus not yet clarified), Nothrus palustris (already found for the first time shortly after the sample collection) and a species of Phthiracarida.

 

Locomotion and biodiversity

 

Purpose of the short film is to show different organisms, cultured after about a year in this sample: mites, nematodes, collembolans and microorganisms, fungae and bacteria. Of the bigger arthropods/insects, only one Lithobius species survived until now.  Also the diversity of ways of locomotion in different oribatid species is emphasized: There are slow crawlers (Nothrus) and fast runners (Phthiracarida).

 

Berlin, April 2019, Copyrights Stefan F. Wirth

Habitat compost: Mite Histiostoma sachsi carries old cuticle and dirt as camouflage

My parents have a compost area in their backyards. I use it as reference habitat for two mite species of the family Histiostomatidae (Astigmata): Since I began my research in 2000, the compost regularly contained Histiostoma feroniarum with its typical male dimorphism. Since summer 2017 another species appears additionally regularly: Histiostoma sachsi. Both species do not appear under the same conditions. While H. feroniarum prefers fresher decaying material, H. sachsi on visibly older decomposed tissue. There mite be even more mites of the Histiostomatidae exist in this complex compost habitat, but under my laboratory conditions, only the two named species were so far successfully reared out of samles always again. Regarding the determination of H. sachsi on a species level, I was more careful in my comments to a former video (June 17), in which I named it Histiostoma cf. sachsi due to doubts about a correct identification. Meanwhile, also due to the morphology of the deutonymph, I determine „my“ compost mite as Histiostoma sachsi Scheucher, 1957. But it is still to emphasize that Scheucher described H. sachsi from cattle dung, not from compost. But generally, both habitats can sometimes share the same inhabitants.

 

Adult females carry their old cuticles and „dirt“ on their backs as tactile comouflage

 

Biologically conspicuous is darkish material, which especially adult females carry on their backs. Unlike males, females posses elongated setae on their backsides. These setae support the holding of material such as old cuticle and soil particles. In slide preparations, this cover usually appears amorphic and contains substrate from the mite’s environment. My video footage indicates that the basis of this cover is a retained old cuticle from the former nymphal instar . That this cannot easily be proven with the light microscope is due to the very soft and fine character of the cuticles in these mites. Remnants might become decomposed by microorganisms after a while.

Compost: the habitat of the mite Histiostoma sachsi Scheucher, 1957 (Acariformes, Astigmata, Histiostomatidae). Copyrights Stefan F. Wirth, please like my video also on youtube, in case you like it.

 

The phoretic dispersal instar, named deutonymph, in mites of the Astigmata controls its body position due to sticky leg endings and suckers on their undersides

 

Deutonymphs of H. sachsi represent one of my resent models to study mite-dispersal behavior. My research focus since a while concerns ultrastructure and function morphology of the deutonympal suckerplates and other structures to attach to insects for dispersal (this dispersal strategy is called phoresie). The anterior front-suckers on the suckerplate of the mite’s underside is extendable and very flexible, not only to find a suitable position on the insect carrier. When falling, the deutonymphs use it to lift their bodies up into a proper position again. Additionally they will try to get hold using „sticky“ lobe-shaped setae on the endings of legs I and II. Both is visible in my footage. The forelegs seem generally to make the first contact, when trying to get on a suitable carrier.

 

Deutonymphs of Histiostoma sachsi take a ride on other mites (Oribatida)

 

The suitable carrier of H. sachsi is unknown to me. Some astigmatid species have even a range of carrier-„hosts“. In my samples, deutonymphs at least attach to other mites, especially to mites of the Oribatida. This is in a very short scene visible in my video too.

 

Copyrights Stefan F. Wirth, Berlin December 2018

Microscopic wrack inhabitants: Mites (Ameronothridae), Protozoans, nematodes and Dipterans

Decomposing detritus (mostly dead algae debris) of marine organic material, laying onshore more or less close to the water line, containing seaweed or cadavers of aqatic animals, is named wrack. Wrack can appear under different kinds of ecological circumstances. In case, it would be in permanent contact with sea water, it might be mostly decomposed by marine organisms. But due to different reasons, wrack can land apart from a permanent sea water contact or even no sea water contact at all any more.

Here mostly terrestrial organisms with a tolerance for salty conditions would inhabit and decompose this piece of detritus. Sandhoppers (Cristacea) are known to switch between wracks of different conditions. They can for example carry mites or nematodes from one wrack habitat to another. Dead organic material generally always needs to be decomposed by living organisms, otherwise the whole ecological system would be harmed.

 

A specific kind of micro habitats

 

A small habitat, which would dry out after a while and thus exists only for a limited time, is called ephemere biochorion. Organisms being adapted to live there, must have adaptations, to leave their habitat by time to avoid desiccation. One option is a life strategy, which is named phoresy. Weaker organisms, unable to desperse themselves efficiently use other animals, such as winged insects, to take a ride on them to new habitats with suitable conditions for a development. Generally phoretic organisms can for example be represented by different groups of mites (e.g. Uropodida, Gamasina, Tarsenomidae, Scutacaridae, some Oribatida, Astigmata) and nematodes (Rhabditida).

 

Mites and nematodes

 

In case of wrack, decomposing close to the waterline, but without or only occasional water contact, Pellioditis marina (Nematoda, Rhabditida) is for example known as phoretic inhabitant along German coasts. Worldwide, crypitical sibling species of P. marina were meanwhile discovered. Depending on the exact situation of the wrack, also aquatic nematodes could appear there for a while. I couldn’t determine the nematode in my footage unfortunately at all, because I did not prepare slides of them enable a larger microscopic magnification. Phoretic mites can be associated with sand-hoppers (Amphipoda, Crustacea) and thus appear in wrack. Mites of the Histiostomatidae (Astigmata) were for example discovered in such a context by some researchers.

 

Mites of the Ameronothridae (Oribatida), sand-hoppers and dipterans

 

I so far never found them randomly, but also didn’t explicitely seek for histiostomatid species until now. My sample did not contain any Astigmata or I at least didn’t find them. Common inhabitants of decomposing wrack are oribatid mites of the Ameronothridae. This taxon with a worldwide distribution is charaterized by specific adaptations to deal as terrestrial organisms with (partly extreme) salty marine conditions. They are mostly algae feeders. Some species are known to appear in wrack. The sample, which I collected in context of the so called „Geo Tag der Natur 2018“ (Geo (journal) day of nature) in Norddeich Mole (East Frisian coast of Germany) contained many specimens (ca. 40, sample size of about 20×20 cm) of the Ameronothridae-species Ameronothrus sp.. My footage shows only one living specimen, as all had died until I began my filming activities.

Inhabitants of decomposing algae tissue along a beach at German North Sea, all copyrights Stefan F. Wirth

 

But I preserved several dead specimens for scientifc purposes. Ameronothridae might, according to literature, use phoresy via birds, but also might disperse themselves over smaller distances, due to their well developed cuticle, protecting against desiccation, and their rather fast locomotion abilities. Larvae of different species of flies (Diptera) developed inside my sample and hatched under my laboratory conditions after about two weeks. They intensively contributed to a fast decomposition of that organic marine tissue. Sand-hoppers were by the way not found at all.

 

Bacteria and protozoans

 

Bacteria are most important decomposers. But the function of protozoans (here e.g. Ciliata) in regard to the process of wrack degradation, which could still be isolated alive after about two weeks of decomposition,  is unknown to me. My sample was found almost on top of a dike, meters away from the highest tide in that area and consisted mostly of the seaweed Fucus vesiculosus.It also contained sea gull feathers.

 

Berlin/ Norddeich Mole June/August/November 2018 Copyrights Stefan F. Wirth