Blog and online journal with editorial content about science, art and nature.

Tag: Stefan F. Wirth

Mite Histiostoma palustre (Histiostomatidae, Astigmata), a mite species with two different male types

Current state of knowledge

Habitat and summary of general biology

I discovered the mite Histiostoma palustre in 2000 (and reared it at least until 2001) in the Berlin gravelpit area „Im Jagen 86“ at about 52°29’18.7″N 13°14’28.2″E and published the description in 2002 (2003). It is phoretically associated with at least two Hydrophilidae beetle species in bank mud (sapropel) around (in times of the sampling several) ponds. The phoretic juvenile instar deutonymph attaches its host insect to be carried that way to a new suitable habitat.

SEM photograph of ventral side of the deutonymph of Histiostoma palustre. © Stefan F. Wirth
SEM photograph of ventral side of Histiostoma palustre deutonymph as negative version, emphasizing single sicking structures and shapes of hind legs, © Stefan F Wirth

Phoretic hosts and attachment site

I in those times determined two host beetles as belonging to the genera Coelostoma and Cercyon. In laboratory host choice tests, in which deutonymphs in a culture had the choice between three different potential host species, there was a significant preference for those Hydrophilidae beetles, while another offered beetle species sympatrically living the same habitat was almost not at all attractive for the phoresy instar. But the choice test was performed as a smaller side project only and offered not more than a host tendency, as for example not a representative variety of insect species from the same natural field habitat of the mite was involved in these choice tests. But indications were at least clear enough that a host specificy (on a higher taxonomic level) of H. palustre can be stated. Mites preferred according to these tests a specific area for attachment on their hosts, which was the dorsal head area.

Two different male types and the difference between polymorphism und polyphenism

The mite showed under laboratory conditions a male diphenism with highly modified gripping organs or normal legs2. While the modified leg can appear on both sides or only on the left or the right side.

Polymorphism“ is used internationally as the overriding term for such a phenomenon. Here, following the teaching of my former research group at the FU Berlin, I distinguished between a purely genetically determined expression of distinctly deviating morphs and the determination of these morphs by the presence of certain environmental factors. In the latter case we are talking about polyphenism. Of course, genetics also play a certain role here additionally.

Studies with cultures grown at different temperatures suggested that males with modified legs 2 appeared significantly more frequently at higher temperatures than at lower temperatures.

Temperatures: 30-32 °C (measured in summer inside the culture dishes at room temperature) and 20°C (climate cabinet, temperature inside and outside the cultures almost equal). Experimental approaches and total numbers of males counted: 10 cultures with lower (don’t remember exactly) numbers of developing mite stages per each of the two different temperatures. n=237 males in total at low temperature, n=729 males in total at high temperature. The number of modified males grew significantly from 18% (20°C) to 45% (30°C), while normal males decreased significantly from 82% to 55%.

Therefore I called the mechanism for the formation of two morphs diphenism. These studies were also a besides project and the amount of data would need to be even bigger according to higher level statistical requirements.

SEM photos of a male morph with modified legs 2, © Stefan F Wirth
Detailed SEM view to a male with legs 2 on both sides modified into gripping organs, perspective almost from the front side. © Stefan F Wirth

About the function of the modified male legs

I could observe in the mite cultures in which H. palustre thrived very well on decomposing potato pieces at about 20°C room temperature that the modified legs of the heteromorphic males used as prehensile organs played a role in intraspecific competition for female mating partners. Here several males, with and without gripping organs, were usually wedged together in veritable clusters around female tritonymphs or adult females. This was because the fighting happened more or less in a slow motion speed with apparent longer lulls in between. During the fights, the legs of the opponents were seized with the prehensile organ and the competitor was slowly pulled away from the coveted female.

Less is known about which selective pressure would favor the morph with gripping organ

Males with normally developed legs were at least seemingly in my observations clearly at a disadvantage here, since their second legs in particular could be easily grasped and they were hardly capable of defense and counterattacks. Nevertheless, random counts at that time did not provide any clear indication that heteromorphic males were possibly found significantly more frequently in the final mating position. The same applies to expectations regarding an unequal sex ratio in favor of males. Instead, males and females appeared to be almost evenly distributed in random evaluations. Additionally males with modified legs on both sides and with only one modified leg on the right and the left were in randomly counted cultures seemingly equally distributed.

Still many questions unanswered about the biology of H. palustre

It was unfortunately not tested at all, whether females mated by heteromorphic males and those mated by homomorphic ones had different reproduction successes. In connection with this biologically highly interesting mite species, many questions about its life strategies could not be examined deep enough during times of my PhD thesis. There was no time for this, since my research at the time was geared towards systematic comparative studies of numerous species. Unfortunately, the species could so far not be found again in its habitat „Im Jagen 86“ – at least not by the means of substrate samplings with only accidental Hydrophilidae inside – until today so that further studies were not yet carried out. This seeming lack of the species‚ presence in its former habitat is probably due to ecological changes in this area, which originally had several ponds, from which now only one remained.

A normal leg 2 of H. palustre compared with a modified leg indicating homolog leg articles and corresponding setation.

What makes this male diphenism interesting from the evolutionary point of view

Two distinct morphs within the same sex of a species is the result of evolution. It does at first not matter, whether it is a dimorphism or a diphenism. A fundamental question, which cannot be answered at this time, is: does the trait of these two morphs indicate that the species is on the way to finally having exclusively only males with prehensile organs, and is the species even on the verge of becoming the to cross the species boundary into a new species? Or is the characteristic of two male types a permanently stabled character, because exactly this has strong selection advantage?

In this context, fossil finds of closely related species (in amber) would be of interest, but unfortunately these are not yet known. It would also be interesting to compare different populations of this species, which are also not yet available. It furthermore would be of interest to understand, what exactly the advantage of modified males versus non modified males might be. Is it possible that an advantage of the modified-legged males is simply that they copulate more frequently, although smaller datasets have not yet confirmed this? And/or do females mated by modified males produce significantly more offspring?

And in the special context of the knowledge at that time that it is a temperature-dependent diphenism, one could raise the question of whether the species „evolutionally prepared itself“ by developing two male forms to cope better with temperature fluctuations. In view of increasing global warming, this may be of general biological interest.

A similar species from Egypt

A publication about a species with modified legs 2 as in H. palustre

In a conference proceedings contribution Bishlawy, S. E. M. O., and S. F. M. Allam published an article containing the description of a species of Histiostomatidae, which the authors have named Histiostoma egypti ( Proc.2nd Inter.Conf.Ent.Soc.Egypt, vol. 1, pp. 407-420, 2007). This is worth of being mentioned here more detailed in context of a possible close relationship of these species or a convergent evolution. But due to the lack of systematic facts, a decision hypothesis is not yet made. I can just emphasize that one showed me photos of that species on a conference in Cairo (Egypt) in 2003, and my first and superficial interpretation was that it even is Histiostoma palustre.

I have not checked whether the species Histiostoma egypti has been accepted internationally as a new species and is therefore also listed in the Zoological Record, as this is not relevant to the considerations here. It is interesting that a similar species was discovered in Egypt, about which there are some biological observations.

However, I only have a text version without illustrations, which is online published like that and which is why I cannot assess this species systematically/taxonomically on a deeper level. The authors refer to a similarity of their species with Histiostoma palustre including a similar diphenism of the males. I, as I already mentioned above, remember confirming this resemblance at an acarological conference in Cairo in 2003, where the co-author showed me photos of the later H. egypti.

Association with laboratory cultures of entomopathogenic nematodes

According to the authors, the species entered the laboratory with entomopathogenic nematode substrate and is doing well in the nematode cultures. The mite species is called semiaquatic, which quickly dies off at lower humidity. According to the authors, the thriving of the mites is to the detriment of the nematodes, which can die as a result. In this context, the authors mention having observed that the heteromorphic male form appears more frequently when live nematodes are present, while the homomorphic form and also the phoretic deutonymphs predominate when previously present nematodes have died.

My general experiences with histiostomatid mites and free living (phoretic) nematodes

A connection between the development of different mite morphs and the presence or absence of living nematodes never became particularly obvious to me in my studies at the time on species with different male types. Therefore, I have never specifically investigated such a connection and can therefore judge the correctness of such a connection as neither improbable nor very probable.

I can confirm, however, that basically all Histiostomatidae species that I examined always appeared together with nematodes, which were usually free-living, microorganism-eating representatives of the Rhabditidae or Diplogastrinae, which are also phoretic and possibly even were spread by the same hosts as the mites.

In this context, I am aware of the phenomenon that nematodes and mites can either compete with each other for food or reduce each other, for example chemically. In any case, it can often be observed that after some time in a culture vessel in which both animal groups were initially numerous, only the mites or the nematodes thrived in large numbers.

General information about the feeding behavior in Histiostomatidae

According to my recent research, based on frame-by-frame videographic analysis and SEM studies, Histiostomatidae species use their filter-feeding mouthparts to feed on decomposing fungal material that is also bacteria-rich. It is highly probable that the fungi are brought by the mites themselves into their habitat, which seems to happen hyperphoretically via fungal spores. The mites probably also control the growth and partial death of the fungus themselves in the form of their fungicidal gland secretions. Specific studies about the feeding behavior of H. palustre do not exist on a more advanced level. Slides and numerous SEM shots might indicate the transport of spores, but I so far had no time to examine those specimen closer. Such results thus need to be presented at another occasion.

Information about nomenclature used in the 2003 publication and about the citation of this species description

Nomenclature for dorsal/ventral setation of juveniles and adults used in this old species description of mite H. palustre was my own invention and is no longer used by me for practical/systematic reasons of comparison.

The nomenclature I introduced at the time of that species description for the pattern of individual fields that cover the thickening of the cuticle (proterosoma shield) on the anterior dorsal side of the proterosoma is still retained by me to this day. I still consider this characteristic in adults to be systematically relevant.

Cuticular shield of H. palustre stabilizes muscle origins at the dorsal proterosoma, close to the mouthparts, © Stefan F. Wirth

The original species description is cited as a 2001 publication on the Acarologia abstract page and is cited as 2002 publication in the PDF of the article provided by Acarologia as open access publication. In fact it was accepted for publication in 2001 and finally published in 2003. Thus I sometimes cited it as 2003 publication, but 2002 would be a correcter citation too. At least the full species name must be Histiostoma palustre Wirth, 2002.

Link to the original species description:

© Stefan F. Wirth 2023, Berlin

Short story: The human nature – A Fairy Tale?

A father lived deep in the woods in a small house with his two growing children, a daughter and a son. The mother did not love the woods and had therefore left her husband and children many years ago.

The father taught his children to be one with nature. And so the son knew all the birds that lived in the forest, not only the many species, but also each individual, which he could always recognize by the sound of its personal melody. The daughter loved the trees and she too knew all kinds and every single tree.

The father had once moved his family from the big city to the woods because he believed that it was the big cities that robbed people of their minds and natural instincts, thus inciting destruction and violence.

In seclusion, he wanted to allow himself and his family to become part of nature again, because he hoped that it would be his descendants who could survive the fate of the world. It quickly became too much for the woman. She missed the narrow streets, the crowded markets, the idleness and the noise of the busy city. And so she fled one dark night and never came back.

The man taught the children how to make fire with stones, and which berries, fruits, and mushrooms are edible. And for a while the father lived with the son and daughter in happy and calm harmony. Only the wind occasionally swept through the green treetops and became the accompanying music in the symphony of birdsongs and the whispering, greening and howling of the wild animals.

But the older the children got, the more they bothered about the seclusion in which they lived. Increasingly, they no longer saw the wild nature around them as an asset, but as a constant threat.

The birds shit on their heads, ate the berry bushes and fruit trees bare. At night the ominous cry of the owls robbed them of their sleep. And the trees, bushes and weeds grew closer and closer to the family’s small wooden house with the crooked chimney.

And it seemed to the children as if the forest wanted to slowly and cruelly suffocate them and their house. And so, estranged from the father, both son and daughter conspired, met secretly in the forest clearing near the river and discussed that the father was probably not in his right mind to just let nature happen. And they realized that only those who know how to subjugate nature would survive.

And when the father went out to get food and firewood, the children began to tame, to control, to clean up wild nature. The son showed the daughter how to make a bow out of wood fibers and thin branches. The daughter explained to the brother which flints could be used most efficiently to quickly start a fire.

And every day, punctually when father left the house, they would meet in the forest clearing and together they would plan to shoot as many birds as possible with the bow. And it was not long before the magnificent symphony of the birds over the great, wide forest fell silent forever.

And brother and sister worked hard to carry the many small dead bodies to the forest clearing by the river, where in the late afternoon, before their father returned, they kindled a huge campfire in which they burned the dead birds of the forest in droves. And they couldn’t resist the smell of the simmering, tender meat, so they ate a feast that prevented them developing any appetite later when their father was preparing supper.

But he wasn’t surprised because he firmly believed that modesty always comes when people have found their way back to their original nature.

When there were no more birds in the whole forest, brother and sister hunted mice and rabbits and everything that was small and rustled or squeaked and frightened the siblings. Here, too, they ate and became fuller and fuller every day. But the father, exhausted from his long excursions and almost blind to everything that contradicted his ideals, continued to ignore the changes in his children and the forest.

And now it was only the increased hunger that moved the siblings to kill all the deer and pigs. And at the feast in the clearing by the river, they filled their bellies almost to the point of bursting. But the father, who was getting older and more tired, still didn’t notice any of this. And now the weasels, foxes, and wolves died of their own accord, so that the brother and sister laid aside their bows, because they only had to collect the dead animals.

There were so many that the siblings slept into the afternoon for many weeks and then indulged in gluttony while the father progressively lost his sight and noticed nothing.

Like pigs, brother and sister had become so fat that they had great difficulty making their way through dense undergrowth and over gnarled tree roots to the clearing by the river. And so they decided to clean up the forest and once and for all to remove all vegetation between the house and the forest clearing.

To this end, both set fire to different places. But they completely underestimated the destructive power of the flames. At first only individual trees burned, but then the flames combined and became a raging and violent conflagration, which first completely burned down the house with unspeakable heat and breakneck speed and then took hold of the entire forest. Brother and sister had no choice but to throw themselves into the river and stay there, mostly completely submerged, for two days until the fire died out, until the forest was completely burned down.

And when they emerged from the river, there was only a soot-blackened wasteland with gnarled skeletons crouching on the ground, the sad remnants of what was once the forest. A huge cloud of soot and water vapor covered the sky and the sun, everything was gray and dark and the smell of death and ash filled the air.

And the father? He was on his way back, with bundles of firewood hauling in a cart and bags full of fruit slung over his shoulder, when he saw the blaze racing toward him. He parked the cart and put his bags down. And in that moment he finally realized what had happened. He would never see his children growing adult, other people would never follow the example of his family and found a new dynasty of purer, nature-loving people with his children.

And just before the firestorm reached his body, shattering his head and evaporating his brain, just before his body thereafter completely crumbled to ashes, tears welled up in his eyes and he exclaimed in a hoarse voice, „So this isn’t a brain spectre, it’s indeed human nature, destruction and killing!“

Oh, if only brother and sister had known the way back to the city. But that was far away, and the path was completely burned and turned into a wasteland. The siblings had little strength left to anticipate and mourn the death of their father.

They laboriously built a small, shabby hut out of the burnt ruins of the house, in which they lived together in a very small space from then on. It wasn’t long before the brother knew every moss and lichen, while the sister knew every stone and every dry waterhole in this forest desert. And so they ate mosses and lichens, which they crushed to pulp with all kinds of suitable stones. And they drank the water from the shrunken river, which was more like thick, foul-smelling slime.

Both, brother and sister, grew thin as spindles, and days turned into months and months into years. Since we are in the year 2085 and cold winters have long since ceased to exist even far from the equator, the former forest slowly turned into a real desert of sand and stone. The rare rain filled the riverbed just enough for brother and sister to drink. Mosses had become rare. And so the siblings were eating lichens and the putrid bank mud of the river, when a dispute arose among the siblings over the privilege of eating.

So they divided the one shabby hut into two shabby huts, which they built along the river bank at a suitable distance from each other, so as to remain close to their feeding grounds but as far away from each other as possible. But occasional quarrels were not absent. Ultimately, the initial quarrel turned into deep anger, and then abysmal hatred. The brother, now a man, began throwing heavy stones at the sister whenever she tried to approach the succulent heap of putrid riverweed and filthy mud he had first spotted.

But the sun shone relentlessly and hot winds sanded the desert landscape more and more. The bed of the river shrank, and the huts of the quarreling scrawny siblings inevitably drew nearer and nearer to one another. In the end, the brother saw no other way out than to burn down the sister’s hut, whereupon she grabbed an old, rusty and long nail and drove it right into the brother’s skull.

She buried her dead brother where the forest clearing had once been, and yes, she shed a tear in the process. And more tears followed, day after day and month after month. After another year, the sister died, not of hunger, nor of thirst or a force of nature, but of loneliness. How can you go on living when there isn’t even someone to hate, she thought just before closing her eyes forever. Her body crumbled to dust that the wind carried up into the air. And the dust became one with the ashes of the forest and those of the father, and finally fell down on the brother’s grave. In the end there was nothing left but the desert.

© all copyrights (text, idea, drawings) by Stefan F Wirth, Berlin, 3 January 2023

New Year 2023, a further step into our future

It is important to follow the progress of time, to constantly develop further and to remain curious and emotional. At least, that's my idea of basic happiness in life.

Basically, there is no need for a specific point in time like New Year's Eve to decide on a bigger step forward, on new ideas, new projects and the processing of all the older ones, while also leaving enough space for an own experiencing of humanity, empathy and commitment.

But the beginning of the year, with its solemn tradition and thanks to the blaring staccato and howl of the firecrackers and bangers, almost forcefully calls us to wonder what we will experience in the new year. I am happy to indulge in this kind of thoughtfulness that is somehow predetermined. It seems to help to additionally making use of this specific moment, once a year at the same time, in winter, at night, in the dark. A repeating and somehow well known environment offers more space for free and productive new thoughts.

Life is not a passive current, it can be shaped. I never want to stop learning, discovering, getting excited by the phenomena of nature, the world, the idea of a bright future and being inspired in my work. I see the future as an experience that I can only successfully go through based on what I learned from each of all the many days of my so far life.

In my sense, I can only experience the future through steady personal progress based on the progress of my past. Also in the new year I have the need to recognize, to feel, to participate, to discover, to observe, to experiment and to communicate. I don't want to get tired, my strength will continue to flow out of myself to a large extent. I will be awake, want to be productive, want to be there as the future gradually becomes the present in 2023. And I will and want to help shape this emerging present like a single powerful ant worker in its ant nest with my strength, with my individual contributions.

I wish everyone a prosperous and peaceful New Year 2023.

© Stefan F Wirth, 1 January 2023

Teaching: Ich als Naturalist – Me as a naturalist

Bumble bee Bombus sp. in Berlin, copyrights Stefan F. Wirth 2021/2022
Honey bee Apis mellifera in Berlin, copyrights Stefan F. Wirth 2021/2022
Deutonymphs of the microscopically tiny mite Schwiebea cf. eurynymphae (Acaridae, Astigmata) formally attached to beetle Phosphuga atrata under the bark of felled tree trunk of Tilia platyphyllos in urban park Rehberge in Berlin, copyrights Stefan F. Wirth, 2021/2022
Larvae of beetle Oryctes nasicornis from Italy with associated gamasid mites under studio light conditions, copyrights Stefan F. Wirth, Berlin 2016/2022
Land crab Metasesarma obesum under studio conditions, copyrights Stefan F. Wirth, Berlin 2017/2022


Ich biete Unterricht, Förderkurse, Vorträge und Fortbildungskurse zu den Themen Naturkunde, Naturschutz, Artenvielfalt, Ökologie, Klimaschutz und Evolution an sowie Unterricht oder Vorträge zur Naturfotografie oder der Naturfilmerei. All dies entweder auf Honarbasis oder via Anstellung. Bitte entnehmen Sie weitere Informationen meinem Menüpunkt zum Thema Unterricht und Lehre. Selbstverständlich verfüge ich über Qualifikationsnachweise zu meinen diversen bisherigen Lehrtätigkeiten sowie meine fachliche Kompetenz. Bitte beachten Sie hierzu auch meinen Menüpunkt Curriculum Vitae.

Doch was sind eigentlich meine Themengebiete? Im Folgenden finden Sie interessante Fragestellungen aus meinen Kompetenzbereichen.

Was ist ein Ökosystem? Welche Ökosysteme sind gut untersucht, welche eher nicht? Wie gut kennt man die Artenvielfalt von Mikro-Lebensstätten in Deutschland, und was ist über deren biologische (ökologische) Zusammenhänge bekannt? Was ist denn eigentlich eine Art, was sind denn dann Zwillingsarten, und was versteht man gar unter einem Artenkomplex (kryptische Artengruppe)? Ist das Aussterben von Arten ein normaler Bestandteil der Evolution oder ist das Aussterben einer Art immer zwingend ein alamierender Hinweis auf eine (evtl. menschengemachte) Naturkatastrophe? Wieviele Arten aus allen Organismengruppen weltweit kennen wir, und wieviele in etwa kennen wir noch nicht? Warum kennen wir viele Arten, sogar in Deutschland, noch immer nicht? Wie erkennt man neue Arten, und wie ist eine sogenannte Artbeschreibung aufgebaut? Ist der Mensch eine Tierart, und wo im Stammbaum der Tiere ist er dann anzusiedeln?

Warum sind ein Wald, ein Teich oder eine Wiese Orte für interessante Entdeckungen, und zwar insbesondere auch für Kinder? Was lebt denn da, und wie ist es an seinen Lebensraum angepasst? Was haben unterschiedliche Arten in solchen Lebensräumen eigentlich miteinander zu tun? Und wie beobachtet man Tierverhalten am besten? Wie dokumentiert man es aussagekräftig, um sein Wissen später mit Freunden oder über soziale Netzwerke teilen zu können?

Wie kommt es zum sogenannten Global Warming, der globalen Klimaerwärmung? Wie können wir sie nachweisen? Warum ist sie zu einem beträchtlichen Teil menschengemacht? Und welche Auswirkungen haben Klimaerwärmung und die Ausbeutung natürlicher Ressourcen (Energiespeicher, Rohstoffe, wie zum Beispiel Tropenholz) für die Zukunft der Menschheit und die Artenvielfalt auf unserer Erde. Welche Auswege erhofft man sich? Woran wird derzeit gearbeitet?

Was benötigt man zur Naturfotografie, was, wenn man zusätzlich oder alternativ auch noch auf gutem Niveau filmen möchte? Was ist grundsätzlich wichtiger: Das Equipment oder das Bild, das zuvor im Kopf des Fotografen oder Filmers entsteht? Muss taugliches Equipment immer ultra-teuer sein? Welche Software eignet sich am besten zum Editieren? Was genügt dabei den Ansprüchen von Anfängern, was benötigen Fortgeschrittene und Profis? Wie filme oder fotografiere ich draußen in der Natur? Wie hole ich stattdessen die Natur in mein Fotostudio und inszeniere sie dort so, dass es aussieht, als habe man im Freien gearbeitet?

Dies sind alles mögliche Themen, die in meinem Unterricht, meinen Kursen oder Vorträgen vertieft werden können. Beliebige weitere Fragestellungen aus den Bereichen Naturkunde, Biologie, Ökologie und Evolution arbeite ich gerne für Sie aus.

I offer lessons, remedial courses, lectures and advanced training courses on the subjects of natural history, nature conservation, biodiversity, ecology, climate protection and evolution, as well as lessons or lectures on nature photography or nature filming. All this either on a fee basis or via employment. Please see my menu item on the subject of teaching for further information. Of course, I have proofs of qualifications for my various previous teaching activities as well as my professional competence. Please also note my menu item Curriculum Vitae. 

But what are my topics? In the following you will find interesting questions from my areas of competence:

What is an ecosystem? Which ecosystems have been well studied and which not? How well do you know the biodiversity of micro habitats in Germany and what is known about their biological (ecological) relationships? What is actually a species, what are sibling species, and what is meant by a species complex (cryptic species group)? Is the extinction of species a normal part of evolution or is the extinction of a species always an alarming indicator of a (possibly human-made) natural disaster? How many species from all groups of organisms worldwide do we know, and roughly how many do we not yet know? Why do we still not know many species, even in Germany? How do we recognize new species and how is a so-called species description structured? Are humans an animal species, and if so, where do they belong in the animal tree?

Why are a forest, a pond or a meadow places for interesting discoveries, especially for children? What lives there and how is it adapted to its habitat? What do different species actually have to do with each other in such habitats? And what is the best way to observe animal behavior? How can you document it meaningfully so that you can later share your knowledge with friends or via social networks? 

How does the global warming come about? How can we prove its existence? Why is it largely human-made? And what are the effects of global warming and the exploitation of natural resources (energy stores, raw materials such as tropical wood) on the future of humanity and biodiversity on our planet? What exits to avoid emergency situations are we hoping for? What are scientists currently working on to ensure a healthy human future? 

What do we need for nature photography, what if we also want to film at a good level in addition or as an alternative? What is fundamentally more important: the equipment or the image that is created in the head of the photographer or filmmaker? Does suitable equipment always have to be ultra-expensive? Which software is best for editing? What meets the requirements of beginners, what do advanced and professionals need? How do we film or take photos outdoors in nature? Instead, how do we bring nature into our photo studio and stage it there in such a way that it looks as if we were working outdoors? 

These are all possible topics that can be deepened in my teaching, courses or lectures. I would be happy to work out any other questions from the fields of natural history, biology, ecology and evolution for you. 

all copyrights Stefan F. Wirth Berlin 2022

Mate guarding of a juvenile female in mites of the Histiostomatidae (Astigmata, Acariformes)

Male of Histiostoma sp. guards a female tritonymph, copyrights Stefan F. Wirth 2005-2022


A strategy to avoid male competition for females


Some mites of the Histiostomatidae practice so-called mate guarding of subadult females in order to have an advantage in the intraspecific competition between males for adult females. My SEM image shows a male on top of a female, which is still inside its tritonymphal cuticle. Inside the tritonymphal cuticle, the adult female is already developed and shortly before hatching. Before hatching, the legs of the new instar are folded under the body side. The new second leg on the right side is visible in the SEM, because the weak cuticle of the old leg broke off. This strategy to avoid sexual competition is quite common with Histiostomatidae. Due to insufficient mite material and not longer available clear ecological data, I determine the long haired adults of my old SEM series with caution as Histiostoma sp., it seemingly was found around sap flux on a tree trunk in Berlin. The species is not identical with Seliea pulchrum (= Histiostoma pulchrum), typically known from sap flux. The distance between the male legs 1 and 2 in the photo is about 0.1 mm. These SEM objects were seemingly chemically dried for the scanning electron microscopic procedure. The photos were taken around 2005 with an older SEM at FU Berlin. © Stefan F. Wirth Berlin 2022

Two different forms of cryptic species-complexes in mites of the Histiostomatidae (Astigmata) from bank mud and bark beetle-galleries and their significance for applied biodiversity research

Biologe ISSN 2750-4158

Stefan F. Wirth, acarologist, freelancer, Berlin, Germany

Citation: WIRTH S. F. (2021): Two different forms of cryptic species-complexes in mites of the Histiostomatidae (Astigmata) from bank mud and bark beetle-galleries and their significance for applied biodiversity research. Biologe (ed. Stefan F. Wirth), category : original scientific papers volume 1 (2021; 2022) , 1-7. URL:


In biodiversity research, knowledge of species numbers is the basis for planning environmental protection and climate research. However, the taxonomic work is made more difficult by cryptic species complexes in the world of organisms. Careless determinations of similar species must be prevented. For a beter understanding, examples from different animal groups are given. Using two species complexes of the mite taxon Histiostomatidae (Astigmata), two different forms of cryptic species complexes are presented in detail. Based on three species from a group associated with bark beetles, an example of a species complex is presented in detail, in which all stages of development look confusingly similar to one another. On the other hand, four species of mites from the bank mud of standing waters can only be confused with one another on the basis of their phoretic dispersal stage (deutonymph), while the adults differ distinctly. The meaning of such species complexes is discussed in the evolutionary and applied context. It is critically pointed out that too few specialists are funded worldwide and few taxonomists have to work too quickly, so that there is a risk of cryptic groups of species not being taken into account in surveys.

Keywords: cryptic species groups, evolution, biodiversity research, Acariformes, Histiostomatidae, Astigmata, phoresy, Histiostoma piceae, Histiostoma Scheucherae, Histiostoma piceae, Histiostoma ulmi, Histiostoma palustre, Histiostoma litorale, male morphology, SEM, Histiostoma maritimum, Scolytinae, Carabidae, sapropel


Biodiversity research is an essential fundament for disciplines like climate research and climate changes and thus contributes to an understanding about, how we humans need to treat our own environments. A main aspect of biodiversity research besides species monitoring is the evaluation of how many species we have. Specialists need to recognize and scientifically describe new species, especially, when it for example comes out that a complex of very similiar species contains more species than expected before (e.g. Laska et al. 2018). In tendency researchers in the field of biodiversity focus most on vertebrates in temperate regions and generally less in invertebrates (Titley et al. (2017).

The number of recently existing species in numerous cases is still unknown, especially in taxa of small organisms, such as mites. Due to a lack of specialists and due to a lack of fundamental research fundings, relatively much is known about direct pests of human sources, such as Varroa or Tetranychidae mites. But within the major clade Acariformes, ecological contexts and numbers and distribution of species of some free living taxa of Prostigmata and Oribatida/Astigmata are still an open field, even in Central Europe, e. g. Germany (Wirth, 2004).

This is despite the fact that for example phoretic mites, which use other arthropods as carriers for dispersal, can have highly complex relationships with their phoretic hosts, thus being of interest from the evolutionary, the ecological and even an applied point of view. The latter is discussed for example in context with different bark beetles, which their mites might affect by acting as vectors for fungus spores (Klimov & Khaustov, 2018).

Cryptic species complexes are a topic that is currently being widely dealt with in science. Such species complexes are characterized by the fact that they are difficult or impossible to distinguish morphologically. However, they can be clearly differentiated from one another using barcoding (e.g. Kameda et al, 2007), behavioral or ecological studies. Crossing experiments are a frequently used ecological method. Because according to the biological species concept, individuals of different species either cannot be crossed with one another or the offspring of such a hybridization is not fertile (e.g. Sudhaus & Kiontke, 2007).

Crossing experiments are particularly suitable for the investigation of cryptic species complexes in species that have a rapid life cycle and, due to their small size, can be accommodated well in standardized conditions. Such organisms are, for example, free-living nematodes of the Rhabditidae (e. g. Sudhaus & Kiontke, 2007) or mites of the Histiostomatidae (e.g. Wirth, 2004).

The cryptospecies phenomenon, which means that closer investigations show that animals once attributed to the same species actually represent several species, can in principle occur in the entire animal kingdom and in plants and fungi too (Shneyer & Kotseruba, 2015). Previously known subspecies are often given their own species status as a result. One example are the two monitor lizard species Varanus niloticus and V. ornatus (e. g. Böhme & Ziegler, 2004).

In this monitor lizard research mainly ecological differences to V. niloticus have been studied. As one of the results, V. ornatus does not have a diapause in summer, which is a distinct difference to V. niloticus (Böhme & Ziegler, 2004).
As an unusual phenomenon, a case of parthenogenesis was even observed in V. ornatus, but not in V. niloticus (Hennessy, 2010) so far. However, morphological differences between these two monitor lizards were known even before, for example relating to aspects of the dorsal drawing. But the authors named above were able to provide evidence that these morphological differences do not occur gradually, as orgininally assumed, but rather distinctly.

Another example of two sibling species (the most simple form of cryptic groups) that have been identified as different species by molecular biological studies are Homo sapiens and H. neanderthalensis (e.g. Prüfer et al., 2014). Originally it was assumed that H. neanderthalensis was a subspecies of H. sapiens. This is for example supported by the proven cultural exchange between the two species and the great morphological similarity. In the meantime, however, morphological findings such as the morphology of the nasal duct of the Neanderthal man have also supported the genetic findings (Márquez et al., 2014). However, very recent studies show that Neanderthal genetics have entered the lines of H. sapiens (Hajdinjak er al., 2021). As a result, both forms have crossed and produced fertile offspring. It remains to be seen whether this will possibly dismiss the concept of two species again.

Since the aim of all studies of cryptic species complexes is to find distinctive differences in the areas of morphology, ecology or barcoding (or all approaches together) that distinguish one species from all others, ultimately clearly definable, very closely related species remain in case of successful studies.

If the cryptic organisms are members of an organism-socialization, such as parasites and their hosts, the idea that a proven host specificity can be an indicator for a certain species of a cryptic complex is obvious. In fact, Wirth et al. (2016) for example postulated a host specificity for the phoretic mite Histiostoma piceae and its hosts, the bark beetles Ips typographus and I. cembrae. Nevertheless, relationships between associated species are usually not studied extensively enough to be able to unequivocally identify certain species on the basis of for example their hosts (Wirth, 2004).

Since cryptic species represent nevertheless separate species despite their extraordinary similarity, they are subject to the species concepts. As a result, they form different niches and can therefore appear sympatric in the same living space (e. g. McBride et al., 2009). This makes it difficult for biodiversity researchers and systematics to investigate the real numbers of species in such habitats.

If, instead, cryptic species are not sympatric, but distributed in adjacent areas, this can for example indicate that an allopatric species formation has either not been completed for a long time or is even still in the process of speciation (e. g. Gollmann, 1984).

Animal species that have different developmental stages can appear cryptic, i.e.  being morphologically confusingly similar, with regard to all these developmental stages, such as for example certain phoretic free-living nematodes, which then additionally have to be studied ecologically or genetically (e. g. Derycke et al. 2008).

Other species can hardly be distinguished morphologically with regard to a certain developmental stage, which is particularly common, but differ distinctly in other developmental stages, which are more difficult to find. Very similar looking lepidopteran caterpillars of sibling species (e. g. Scheffers et al. 2012) can be more commonly available than their adults, which might be easier to distinguish.

As a specialist for mites of the family Histiostomatidae (Astigmata, Acariformes) I will in my further argumentation refer to my biodiversity studies on these mites and explain the difficult situation for describers of new species based on several specific histiostomatid species, some being phoretically associated with bark beetles and others associated with different coleopterans from muddy sapropel-habitats around ponds in Berlin/Germany.
In connection with these cryptic groups of species, reference should be made to the applied difficulties in connection with biodiversity research. I am referring to the fact that, for a variety of reasons, often only a certain juvenile stage (deutonymph) is used for species descriptions (e. g. Klimov & Khaustov, 2018 B), although cryptic species can occur sympatricly in the same habitat and in many cases not be sufficiently differentiated from one another on the basis of just this one stage.

In Histiostomatidae as in most Astigmata taxa, the deutonymph (in older publications hypopus) represents the phoront, being adapted morphologically and behaviorally in getting dispersed by insects or other arthropods. This instar has no functional mouth, possesses a ventral suckerplate to attach to its carriers and a thicker sclerotization against dehydration. The deutonymph is often collected together with its phoretic host. Bark beetle traps are for example a common source, where dead deutonymphs still on their hosts come from and are subsequently forwarded to acarologists, who then are of course unable to create a mite culture in order to have also adult instars available for species descriptions  (e. g. Klimov & Khaustov, 2018 B) and other taxonomic purposes. This paper shall clarify, why it is instead necessary for a clear species determination to have the deutonymph and additionally at least adults available.

In this publication two cryptic species complexes from the taxon Histiostomatidae (Astigmata) are presented as result of my original scientific work. On the one hand morphologically very similar representatives of the Histiostoma piceae-group, which are originally associated with bark beetles (Scolytinae), on the other hand similar looking representatives, which are bound to insects in the area of ​​the banks of ponds with digested sludge (sapropel). It needs to be emphasized in that context that those herewith introduced two cryptic clades are phylogenetically not closer related to each other.

The presented bark beetle mites (chapter 1 in results) can only be distinguished morphologically by very gradual characteristics, in terms of phoretic deutonymphs as well as in terms of adults. However, there is a tendency towards host specificity (e.g. Scheucher, 1957), which is why there could be a permanent spatial separation of the species despite common occurrence in the same region.

The mites from the sapropel in the area of ​​the pond banks (chapter 2 in results) are presented on the basis of a certain area in Berlin (Germany), where they appeared sympatric. Unlike the bark beetle mites, they are morphologically clearly distinguishable with regard to the adults, but have morphologically very similar deutonymphs, which essentially only differ from one another in degrees.

Based on the representatives of two different cryptic species groups presented in this work, it should be shown that a sufficient range of morphological features for systematic and taxonomic differentiation and characterization of species can only be available if at least two developmental stages of a population can be studied. It is also pointed out that high-resolution optical methods can uncover a possibly systematically relevant variety of morphological features that would otherwise remain hidden. It is suggested that a suspected host specificity cannot always be used to differentiate between very similar species and that cryptic species can be found sympatricly on the same host as well as in the same habitat. The main aim is to show that there is a risk of confusion and a risk of underestimating the existing biodiversity if only the deutonymph is used for taxonomic purposes, just because it is for example easily available, when the host is captured. Nevertheless species descriptions based only on the deutonymphs are unfortunately still surprisingly common.

Due to the lack of sufficient research fundings and a corresponding decrease of experienced specialists, trends to remarkably simplify determinations and species descriptions are about to manifest themselves. Non specialists or less experienced acarologists increasingly try to recognize or describe new species based on the availability of deutonymphs only, because these phoronts are often easily accessible as bycatch of entomological material. It is mistakenly assumed that faster procedures could accelerate the level of scientific knowledge about the biodiversity of astigmatid mites (Wirth, 2004).

Material and Methods

Chapter 1 is an illustration of the current state of my research about a cryptic bark beetle-associated group of species. Problems and questions are additionally shown both on the basis of existing, in part own, literature. Chapter 2 is about four species of Histiostomatidae that were recorded from an old gavelpit area in the urban Berlin forest Grunewald, named „Im Jagen 86“, located 52° 29′ N, 13° 14′ E. This chapter focuses specifically on Histiostoma maritimum, collected between 2002 and 2012 (and also between 1999 and 2000 during my diploma thesis). Besides H. maritimum three other species were found in the same area and habitat: Histiostoma palustre, collected once via deutonymphs from a beetle of Genus Cercyon in 2002 and reared in culture over about two years on moist decomposing potato pieces, Histiostoma litorale, isolated as adults from sapropel mud once in 2002 and Histiostoma n. sp., reared only one generation long from adults to adults in 2019, inside sapropel-mud samples with moss growth and moist decomposing potato pieces.

Mites of H. maritimum were collected as deutonymphs on the beetles Heterocerus fenestratus (rarer on Heterocerus fusculus) and Elaphrus cupreus from sapropel around two ponds in the named area. After different experiments, mites developed successfully on beetle cadavers on 1.5 % water agar in Petri dishes (diameter 5 cm) at room temperature (ca 20°C, summer 2002). Three cultures (one cadaver of C. elaphrus and twice each time two cadavers of H. fenestratus) were observed over a period of about three weeks (additionally small pieces of beef heart were added to all these cultures to maintain suitable food sources). Adult mites were stored in 80 % ethanol for about 5 days and then critical point dried for SEM studies. Photos were taken by an analogous medium size camera via a Philips SEM 515 and later developed. Still unpublished copies from 2002 were scanned in a high 600 dpi solution and as tiffs via a CanoScan Lide 2010 in 2021. Restauration and picture quality improvement were performed via Adobe Lightroom. The areal panorama of the former multiple pond area was captured in September 2018 via a Dji Mavic Pro drone at a height between 30 and 50 m and subsequently modified into black and white.

Setal nomenclature follows Griffiths et al. (1990).


Seiten: 1 2 3 4 5 6 7

RAW Berlin as a cultural center in Germany’s capital


An inspiring composition of terrace, window, gate, trashcan and graffiti, copyrights for photo Stefan F. Wirth, June 2021

The RAW (Reichsbahnausbesserungswerk) extends between Warschauer Strasse, Revaler Strasse and Modersonstrasse in the Berlin district of Friedrichshain. The former railway area, which was closed in 1995, is considered to be the largest contiguous and culturally used fallow area in Germany.

Graffiti art giving the old architecture an own kind of dynamics, copyrights for photo Stefan F. Wirth, June 2021

Today the ruins are used culturally in a variety of ways. In addition to several clubs and art galleries, there are sports facilities, art studios and various take-out stands.

Self-government and graffiti art

The area is under grassroots self-government.

Atmosphere during a summer day, copyrights of photo Stefan F. Wirth, June 2021

You can already see art without having to enter galleries, namely in the form of graffiti art, which blends harmoniously and inspiringly into the partly crumbling terrain.

Skate hall and mosaic of architecture, daily life remnants and graffiti

Sports activities are also revealed to the visitor very quickly when entering the area. For example, the skate hall, which opened in 2004/2005, is the only indoor skating facility in Berlin and is internationally well known in that sports scene.

But during my short visit on a summer day afternoon in end of June 2021, I was most impressed by the mosaic of architecture elements, Graffiti and signs of daily life.

A corner close to the entrance from Revaler Straße, copyrights of photo Stefan F. Wirth, June 2021.

All copyrights Stefan F. Wirth, 27 June 2021

Reawakening at very early spring

Morning mist

Forest in the morning, tree stems covered by a foggy most, borderless steam wraps slowly rising in the air and disappearing there tracelessly.

Forests as moisture reservoir, being released in the morning due to the awakening warmth. Morning mist is nothing else than a fog, only some meters over the ground. Consisting like each fog of numerous water bodies in gas conditions, which condensate due to the cold night and seem to have springled all plants and even insects and other sleeping animals with tiny water drops.

Especially in arid environments, that morning mist watering is most wanted and essential for surviving.

With the rising sun, warmth moves the misty clouds up, where they cover the forests in a mysterious light, before the fog disappears.


Consisting of all rainbow colors, each color of the spectrum being defined by a specific wave length. But sunlight also consists of physical components, particles, called solar wind.
Light as essential source for life on earth, sunlight as energizer, basis for the production of oxygen. Warmer sun beams as reawakener of a sleeping forest.


They bloom most early in the year, do not avoid to attract early insects inmidst of snow layers: snowdrops, winter aconites and crocuses.

Snowdrops (genus Galanthus) generate thermal energy due to the absorption of sunlight. This energy is essential for growth processes in cold environments.

Winter aconites (Eranthis hyemalis) have their blossoms only opened in the sunlight. Blossoms are closed over night. Opening and closing are temperature dependent growth processes. The blossoms themselves are resistant against cold. When temperatures rise to 10 – 12 degrees, first honey bee visits can be observed.

In crocuses (genus Crocus) blooming depends on the availability of moisture and warmth. Some species bloom in autumn, others in the late winter period.

All early blooming plants save nutrients as energy resources in tubers or bulbs.

Blue hour

When the sun disappears behind the horizon, an explosion of colors in red or yellowish cover the sky. In fact indicating the end of a day, in some cultures even officially a new day was dawning, when the sun disappeared, such as in Judaism, Islam or ancient Germanic peoples.

Saying „the sun is setting“ is a relict of a geocentric model of perspective. Not the sun is moving, but the observer.

When the sun is far enough underneath the horizon, the blue light spectrum dominates and creates a shiny blue sky, forming a photogenic contrast to the silhouettes of trees and landscape structures.


The only recent Trabant of our earth, presumably sirvivor of two or even several natural earth satellites in early times of our solar system.

Reflecting sunlight at night, lightening up the sky in the dark. Orientation aid for nocturnal animals, especially insects. Rhythm generator for the reproduction periods of numerous organisms.

The only extraterrestrial body that was so far ever visited by human beings. The first, which might be colonized before Mars.

All copyrights Stefan F. Wirth, Berlin March 2021

The details about snow


In former times, when people lived in a mystic world, where elves, dwarfs, leprechauns and talking wolves did their dreadful state of affairs in the midst of dark and impenetrable huge forests, people thought that even the old trees in the woods had their own thoughts.

Park Rehberge in Berlin

Uncontrollable, sounds, the snorting of the deer, a mysterious hidden, permanently changing shades in a cold and misty twilight.


A forest is only then a forest, when a high concentration of trees is given. Woods bear a great number of species, produce a majority of oxygen in our world; they are huge reservoirs of water and stabilize the ground with their tangles of roots.


Snow consists of ice crystals. Their formation within clouds depends on the presence of ice nucleating particles and temperatures lower – 12°C.

Crystals possess a hexagonal symmetry, being prism-shaped at lower temperatures and dendrite-shaped at higher temperatures.

Temperate deciduous forests hibernate without functional leaves. Most trees throw off all leaves already in autumn to be protected from desiccation in winter frost periods.

Layers of snow are excellent thermal conductors and additionally protect all life underneath from frost damages in the cold season.

Waiting for the spring time

Most life forms hibernate together with their leafless trees. Especially accumulations of deadwood contain remarkable numbers of species, such as insects, spiders, mites or nematodes. Some already begin under their snow cover to prepare themselves for the warmer season.

When all snow is gone, winter colors in red, yellow, brown and some green reappear. Early blossoming plants are already germinating.

Berlin: Arthropod diversity in 2020 (Corona year)

I documented my nature excursions in 2020 via photography and videography with a special focus to animal macros (outside in the field) and to drone flights. There is also an underwater scenery existing. Most footage was recorded in the area between villages Lübars and Rosenthal in Northern Berlin, close to the nature refuge „Tegeler Fliess“.

The area is characterized by fields, meadows and forest parts and lays along the former GDR wall, today being a hiking and biking trail. Due to a connected mosaic of different ecological habitats, a remarkable biodiversity can there be found, even despite of the worldwide species‘ extinction based on a mostly human made global warming.

My videographic review of the second part of the Corona-year 2020, focussed on arthropod life on meadows in Northern Berlin, all copyrights Stefan F. Wirth

Some few sequences were recorded in other parts of the green city Berlin, namely in the park of the Charlottenburg Palace (beginning sequences of the video) and in urban park Rehberge und Plötzensee (the leaf beetle Galeruca tanaceti in Plötzensee and the scarabaeid beetle – systematically related to genus Cremastocheilus- in Rehberge). Crematocheilus (Cetoniinae) is a genus of myrmecophilous beetles. My individuals were not yet determined, Their existence in Berlin might be even of scientific interest. As putative phoretic vector (to carry mites for their dispersal), they are at least of interest for me, although the studied three beetle individuals did not carry mites at all. The beetles were all found in front of an ant nest intrance (Lasius niger) along the roots of an oak tree in park Rehberge.

As my scientific/ photographic/ videographic excursions happened in exactly that year, 2020, in which the normal human life came worldwide totally out of order based on the covid-19 pandemic, I decided to add this topic to the concept of my video. The video presents nature footage from my visit in the correct seasonal order, beginning with May and June, followed by July, then September/October. In front of each of those months-blocks, I added at that time some important recent news headlines about the corona-pandemic. I named these written parts „corona calendar“. The few December sequences are only dedicated to human street life, showing Berlin in the total lockdown phase, being filmed in black and white (with red recognition).

Berlin, 2 January 2021, all copyrights Stefan F. Wirth