biologe

Blog and online journal with editorial content about science, art and nature.

Tag: wetlands

Drone flights: Worth seeing nature around the fields of Berlin

The metropolis Berlin is the capital of Germany and much more than that. It represents an unusual green city. When using elevated viewpoints to watch the cityshape, then at least in summer visitors of Berlin can receive the impression of being in the midst of a greening huge landscapes with several villages in between.

 

Green areas in Berlin

 

 

Indeed related to other metropolitan cities of the world, Berlin is still partly not very densely populated and covered by remarkable huge natural countryside instead. The area of landing and runway strips of the former airport Tempelhof for example up to date represents the largest coherent green area inside a city worldwide. The so called Tempelhofer Feld was after the termination of the air traffic exposed to renaturation and is currently a very popular recreational park. It’s located in the South of the city.

Also the West and South-West partly represent nature reserve areas and are covered by the big urban forest Grunewald.

 

Meadows and wetlands in the North of Berlin as nature refuges

 

I am since two years discovering the Northern parts of Berlin, which according to my random observations (in comparison with other Berlin areas, such as Tempehofer Feld, Teufelsberg (Grunewald) and some urban parks in the center of the city; examples of species will be visible on my corresponding blog article) bears the greatest biodiversity in bloom visiting insects.

 

 

 

Mosaic of different landscape types close to each other

 

 

 

 

 

This is seemingly due to the complexity of different meadow-, field-, wetland- and bog-habitats, being originally shaped by the Weichselian-glaciers. I regularly visited the stream valley of the so called Tegeler Fließ with the lake Köppchensee. It’s a hilly area with different gradients of sunny slopes with partly Mediterranean climatic conditions, surrounded by different kinds of wetlands. This area is well known for its great biodiversity.

 

Between the villages Rosenthal, Lübars and Blankenfelde

 

But my drone flights present vast tracts in the South of that stream valley, consisting of fields, green meadows and wetlands. It is the area between the Berlin villages Rosenthal, Lübars and Blankenfelde. Inner urban agriculture is rare in metropolian cities worldwide, in Berlin there is only a small agriculture area in the South (Dahlem Dorf) and the fields between the named villages in the North.

 

Drone flights and bloom visiting insects

 

 

Fields and meadows with adjacent forests and wetlands in the North of Berlin, September 2019, copyrights Stefan F. Wirth. Please give my video also your like on Youtube.

 

Most part of the footage in my film represents the fields adjacent to the village Rosenthal. I newly discovered the partly quite tiny meadows between and adjacent to agricultural fields around Rosenthal this summer and discovered an impressive and steadily visible diversity of bloom visiting insects there. Fields as monoculture habitats usually bear a smaller biodiversity related to wild-growing nature zones. But due to the connection of the edges of fields with complex nature refuge zones around, I could observe a quite great number of species on closely adjacent meadows and even the natural border zones of these agricultural areas.

 

Videographic details

 

The footage was captured in 4K and D-cinelike quality using a Mavic 2 Zoom drone between September and October 2019.

 

 

Berlin, September/ October 2019, copyrights Stefan F. Wirth

 

Countryside of Berlin: urban green in a drone view (4K)

Many tourists from overseas use to visit European cities in a much too short time. For this reason they often miss an entire picture of for example the city Berlin, when inserting an only short interstop here. Especially winter tourists can experience the German capital as a sad a grey urban being with some architectural major sites and a remarkable party life only.

 

Climate and landscape types in Berlin

 

Berlin has a continental climate and shows a completely other face in summer. It’s a very green face. Not only is the center of the city then colorfully greened by numerous urban parks, which partly lay almost adjacent to each other, but also the outskirts, in major parts covered by forests and grasslands or fields, appear like green oases.

 

 

Countryside of Berlin as aerial videography, Copyrights Stefan F. Wirth, Berlin June 2019. Please give my video on youtube a like, in case you like it.

 

 

Lübarser Felder and surrounding

 

Lübarser Felder is an area of agriculture, being under the management of inhabitants of the adjacent village Lübars, which represents the only Berlin village that still practices agriculture. The village has a long history and still has architectural monuments, dating back to the 19th century. Lübarser Felder lay adjacent to a nature refuge area more in the north, consisting of different kinds of wetlands, such as bog meadows or lowland fens. Lake Köppcensee as part of that nature refuge area is visible from a bigger distance in one scene of my video.

 

Püttberge and surrounding

 

The sanddune-mounts Püttberge are located in the east of Berlin and belong to the nature refuge area Wilhelmshagen-Woltersdorfer Dünenzug. The area consists of sandy mounts, some of them reaching a height of up to 68 meters. They are part of the glacial valley of Berlin, which dates back to the Weichselian glaciation, which happend between 115,000 and 11,700 years ago and covered almost the whole Northern Europe. The dune elevations of Püttberge were formed due to windblown sand inside the glacial valley. My footage shows the Wilhelmshagen-Woltersdorfer Dünenzug in a greater distance seen from the edge of the whole area. Ecologically the Püttberge are characterized by numerous plants and animals, being typical for sanddune environments.

 

Lieper Bucht at river Havel

 

Lieper Bucht is a bathing beach area at river Havel, belonging to the Berlin city district Nikolassee in the South-West of Berlin. The adjacent forest area is the huge urban forest Grunewald. The riverside of Havel in Berlin is geologically charactrized as sandy with a tendency to the formation of dunes, being like Püttberge a relict of the Weichselian glaciation. Flora and fauna are correspondingly composed. Pine trees for example are typical representatives. The nearby Havel islands Lindwerder and Schwanenwerder are visibe in my footage.

 

Berlin, June 2019

Copyrights Stefan F. Wirth

Agriculture, natural countryside and stream pasture landscape north of Berlin

Berlin as a green city

 

 

Berlin is an unusually green metropolis. Besides numerous urban park landscapes and the huge forest area Grunewald, there is a unique countryside north of Berlin, including the area of the old village Lübars, being surrounded by numerous fields (Lübarser Felder) and a stream pasture landscape, named Tegeler Fließ, with bog meadows.

 

 

Nature sites Lübarser Felder, Arkenberge, Schönerlinder Teiche in 4K, copyrights Stefan F. Wirth. Please also like my video on Youtube.

 

Mounts Arkenberge and pondlandscape Schönerlinder Teiche

 

In the northeast, around the urban village Blankenfelde, the currently highest elevation of Berlin can be found, the Arkenberge. Originally, they represented a chain of smaller mounts as natural remnants of the Weichselian glacier. One of these mounts is especially conspicuous and is acually prepared to become accessible for people and forms with a height of 122 m over NHN the highest mountain of Berlin. It represents despite of its natural origin a rubble landfill site, which was formed beginning in 1984.
Adjacent to the Arkenberge, several wetland areas attract nature enthusiasts for hiking tours: the pond landscape „Schönerlinder Teiche“ (Brandenburg) and the lake Kiessee Arkenberge.

 

Lowland area of the stream Tegeler Fließ as remnants of the Weichselian glacier and adjacent calcareous tufa area

 

The stream Tegeler Fließ is a wetland nature site with a high biodiversity of plants and animals. It is surrounded by different types of bog meadows. The Tegeler Fließ lowland is also a result of the last glacier period.

The stream lowland is additionally adjacent to a calcareous tufa area, which is well visible from top of the Arkenberge. Calcareous springs and calcareous tufas created here calcareous rush- marshes with an interesting biodiversity of for example species of mosses and snails.

 

https://www.instagram.com/p/BuZUYu3FVJK/

Video footage

 

The footage was captured from localities around the village Lübars in the area of Lübarser Felder and additionally around Arkenberge. Some above mentioned nature sites are only visible in a distance.

 

Berlin, March 2019, copyrights Stefan F. Wirth.

 

Berlin forest Grunewald – former gravelpit area, type location for the mite Histiostoma palustre

The city of Berlin geomorphologically consists of witnesses of the Weichselian glacier. The modern city itself and adjacent federal states represented end moraine areas with fluvio-glacial debris accumulations,  even well visible today due to a very sandy soil composition and a corresponding vegetation, creating landscapes, which partly almost look like from around the Mediterranean Sea.

Sands carried by the glaciers towards their end positions remained in partly huge layers with a thickness of up to 20 meters or more.

 

Gravelpit zone and its history

 

Also the area of the old gravelpit zone, called „Sandgrube im Jagen 86“, in the Berlin forest Grunewald is located inside such an end moraine zone, which was represented by plates belonging to the geological Teltow-plateau. In the time period between 1966 and 1983, gravel was excavated for industrial purposes. After 1983 a part renaturation was supported by nature conservationists. In 1992 in total 13 hectares of the former gravelpit area were allocated as nature conservation areas.

Other parts of this unique landscape remained accessible for the public. They represent today popular places for leisure and experiences of nature. Especially the huge sand dune is a popular destination for families with children.

 

Aerial videography of the gravelpit area in January 2019, copyrights Stefan F. Wirth. Please like my video also on Youtube, in case you like it.

 

 

Gravelpit zone and its ecology and biodiversity

 

The whole area – nature protection and accessible zones – show a complex mosaic of different  landscape types, offering numerous animal and plant species a well suitable refuge.  Neglected grasslands and dry meadows are surrounded by sandy areas free of any vegetation („dunes“) and moist osier beds and wetlands with ponds. The wetlands represent breeding grounds for numerous amphids. Lizards such as the sand lizard Lacerta agilis and snakes such as the grass snake Natrix natrix can regularly be observed. Sandy habitats offer space and specific ecological conditions for a interstitial fauna, consisting for example of different bee and sand wasp species.

In total the area bears more than 300 ferns and flowering plants, 16 breeding bird species, 7 amphibian species and 188 butterfly species.

 

My own scientific mite research in the gravelpit area

 

I was performing scientific research in that gravel pit landscape during the work on my phd-thesis between 2000 and 2005. My interest was (and one of my interests is still) focussed on specific organisms living around the shoreline of ponds.

The whole area of the gravelpit landscape is a good example for ecological changes that happen naturally with the ongoing time or even being affected by climatic changes. Between 2005 and 2018, the landscape partly changed significantly. Neglected grasslands and dry meadows covered less space originally, and instead several smaller ponds existed and offered amphibs and wetland inhabiting insects additional habitats. But some of the ponds already years ago dried out permanently. Their remnants are now covered by extended dry grasslands.

In former times of my phd thesis and even today, my research interests focus and focussed on the mite fauna in and around the muddy shorelines of ponds inside this former gravelpit area. The ponds are mostly surrounded by sapropel, a seemingly black and brownish mud, which is colored that way due to the incorporation metal sulfides. These muddy areas develop due to biochemical modifications of organic material in the absence of oxygen. Different insects, especially beetles live on top of these waterside habitats or even inside. Carabids of genera Elaphrus or Bembidion represent predators, while heterocerid beetles of genus Heterocerus are substrate feeders, presumanly with a preference for diatoms. Also water beetles of Dytiscidae and Hydrophilidae inhabit these habitats.

 

The mites Histiostoma maritimum and Histiostoma palustre

 

I discovered some of these beetles as dispersal carriers for specific mites. The dispersal strategy to take a ride on bigger animals to become carried from one habitat to another is called phoresy. Mites of the Astigmata represent typical phoretic organisms. I am scientifically specialized in a specific family of the Astigmata, which is named Histiostomatidae, and I discovered the mite species Histiostoma maritimum Oudemans, 1914 on Heterocerus fenestratus and H. fusculus as well as on Bembidion and Elaphrus species insside and on top of these muddy zones. I was the first acarologist, who ever studied the biology of this mite species. I furthermore discovered another mite species that was completely new to the scientific knowledge, and thus I scientifically described it as Histiostoma palustre („palustris“ = „muddy“) in 2002.

This species deserves particularly mention due to an unusual biological phenomenon: populations show a so called male dimorphism (better diphenism). Besides males with a „normal“ morphology, morphologically modified males appear. Their second legs differ from the typical shape of a mite and are modified into clasping organs. The function of these conspicuous organs could so far only be interpreted in the context of male to male competition conflicts for a female. In such situations, I observed the organs being used as arms against other males, against such ones with and such ones without clasping organs.

 

img_0015.jpgbest

Right modified leg of a male of Histiostoma palustre. Copyrights Stefan F. Wirth, 2002/ 2019

 

img_0016best

Modified leg of a H. palustre male in closed position. Copyrights Stefan F. Wirth, Berlin 2002/ 2019

 

img_0017.jpgbest

Underside of a H. palustre male with modified leg. Copyrights Stefan F. Wirth 2002/ 2019

 

img_0013.jpgbest

Asymmetry: male of H. palustre with only the right leg modified. Copyrights Stefan F. Wirth 2002/ 2019

 

img_0012.jpg best

Asymmetry: male of H. palustre with only the left leg modified. Copyrights Stefan F. Wirth 2002/ 2019

 

img_0014.jpgbest

Copulation of a Histiostoma palustre male with both-sided modified legs. Copyrights Stefan F. Wirth, Berlin 2002/ 2019

 

img_0010best

Details of a copulation with a modified male, copyrights Stefan F. Wirth, 2002/2019

 

 

Berlin, January 2019. Copyrights Stefan F. Wirth

Months passing, but where has all the life gone?

I am standing in Berlin. The sky is a grey monotony. And while tiny waves gently wash around the little sandy beaches, tree skeletons surround the hidden bays on the Havel river. A semi-lucid vapor is covering the branchage of leafless treetops, already early in the afternoon. It is December in Berlin. The entire spectrum of bright summer colors is overlaid by muddy shades. Only larger groups of pine trees gleam in a greenish-black out of a giant cemetery of seemingly inanimate bodies of beeches, oaks, birches and maples. The cry of a heron in a far distance, but where has all the colorful and manifold life gone?

T. S. Eliot (1888-1965) wrote („Journey of the Magi“):

„A cold coming we had of it, just the worst time of the year  For a journey, and such a long journey: the ways deep and the weather sharp, The very dead of winter…“

Shakespeare (1564-1616) on Sonnet  97:

„…What freezings have I felt, what dark days seen! What old December’s bareness everywhere!…“

Seeming emptyness of a Forest-waterside landscape in winter, copyrights Stefan F. Wirth, Berlin December 2018. Please like my video also on Youtube, in case you really like it.

 

Bareness, emptyness, death, attributes being combined with winter since mankind exists. From the evolutionary point of view a serious problem that early humans  had to master. The seemingly emptyness was for them a very real lack of sources. They needed to prepare the winter time, food needed to be stored and protecting clothes to be stiched. There was no well organized international trade of goods, no fresh apples and pears in winter, no cheap winter jackets made in China. Winter meant to fear for the basic survival.

Today we live a different life, being independent from the seasons. Life today means for us to fear for the basic survival of our environment. What are the effects of a global climatic change? What the effects of our environmental pollution? What changes are independent from all that and just represent natural processess as they happened again and again since about 470 millions of years, when the first plants appeared on shore?

 

Most life does not disappear in winter, it just hibernates – alive!

 

The Berlin nature refuges around the forest Grunewald-terrain are interesting due to their complex mosaics of different habitats close to each other. Forest Grunewald in Berlin and the sandy beaches and bays along the Havel river offer space for lizards, an interstitial insect fauna, dry grassland visitors such as butterflies, wetland animals like frogs and newts, aquatic inhabitants like river lampreys, numerous bird species and inhabitants of wood in all kinds of decomposition stages such as bark beetles, longhorn beetles or hermit beetles.

 

Migration

 

Some animal inhabitants of the Grunewald/ Havel-area in summer migrate during the winter season, but most species stay. They hibernate and are even now in December still there.

 

Birds

 

Many birds show a strict migration behavior to avoid northern winters, others migrate in greater numbers, while some specimens stay, and some migrate only over smaller distances. Which of those migration behaviors is exactly performed by which bird species might depend on climatic conditions and is object of scientific research. NABU for example regularly starts projects, to which the general public can contribute with own observations. One of them takes place in early January and is named „Stunde der Wintervögel“ („the moment of winter birds“).

Common cranes Grus grus and greylag geese Anser anser normally migrate over bigger distances and numerous bigger routes towards southern winter refuges. Especially cranes are in summer for examples inhabitants of the Havelland Luch, thus prefer areas more western of Berlin. A trend was observed by ornithologists that more and more often, obviously corresponding with a global warming, troops of crane specimens stay instead of migrating southward.

Migration behavior of common cranes and greylag geese in Linum, autumn 2018, copyrights Stefan F. Wirth

Female of the red-backed shrike in Berlin (Köppchensee). The bird is a typical long-distance migrating animal. Copyrights Stefan F. Wirth, 2018

 

Butterflies

 

The red admiral butterfly Vanessa atalanta is known as a migrating insect. The „normal“ case is that migration from Southern Europe towards Central Europe is performed in spring. There, a summer generation develops and in autumn either tries to migrate back southward or to hibernate as adult butterfly, where it hatched, for example in Germany. But specimens mostly do not survive their tries to hibernate during our cold winters. This makes the admiral to a rare example of our summer-fauna, which over here partly indeed dies out before winter begins. The migration routes of populations throughout Europe is still topic of research. The migration behaviors seem to change corresponding to a global warming.

Admiral butterfly in Berlin, copyrights Stefan F. Wirth, 2018

 

River lamprey

 

Also the river lamprey Lampetra fluviatilis obligatory needs migrations over bigger distances. But these migrations do not correspond primarily with our cold seasons, but instead with the complexity of its life cycle. Larvae, which differ morphologically from adults, hatch in our freshwaters and develop as filter feeders within about three years, in which they  hibernate inside their aquatic freshwater habitats. They then migrate after a morphological metamorphosis towards the Sea. There they live as ectoparasites on fishes until they reach sexual maturity and then return into freshwater-rivers to reproduce and finally die. It is still subject of research, whether they return for their reproduction to the areas of their original larval development.

 

Hibernation

 

Sand lizard

 

The sand lizard Lacerta agilis  hibernates in hideaways, which are able to hold a temperature around 5°C. There they fall into winter numbness due to their unability to regulate their body temperature independently from the environment. Juveniles and adult genders start their hibernations  at different times.

Sand lizard juvenile, found in Berlin Grunewald/ Teufelsberg, copyrights Stefan F. Wirth

 

Frogs

 

Toads and frogs hibernate after finishing their metamorphosis, juvenile and mature specimens spent a diapause as a total numbness such as in lizards. Amphibians and lizards are poikilotherm, thus their body temperature corresponds to their environment (some monitor lizards Varanus were found to have physiological abilities for a limited self regulation of their temperature, which is an exception within the taxon big Squamata).

Marsh frog Pelophylax ridibundus, pool frog Pelophylax lessonae and edible frog Pelophylax kl. esculentus survive the cold season in hideaways, which maintain acceptable environmental temperatures. While pool and edible frog hibernate on land, the marsh frog spends its diapause in aquatic habitats. Skin respiration then plays an even more imortant role, which is why these frogs require a high availability of oxygene. The edible frog is even from the evolutionary point of interest, as it represents a hybride between two closely related species, namely marsh and pool frog. It is in many of its populations non reproductive with other hybrides and needs one of the parental species to reproduce. But interestingly triploid specimens of the edible frog sometimes develop in populations and bear the complete genomic information of one of the parental species. These edible frogs can reproduce with other hybrides They can be found throughout Berlin. Such specimens are difficult to be determined morphologically, as they resemble in their outer appearance either to the marsh or the pool frog.

 

Sand wasps

 

Insects hibernate in different developmental instars, if holometabolic, egg, larva, pupa and adults are options, if hemimetabilic eggs, nymphs or adults perform the winter diapause. Some insects can even hibernate in all of their developmental instars.

The quite common red-banded sand wasp Ammophila sabulosa for example is part of the insect interstitial fauna and does not practise brood care, but maternal care. Females built up several single nests up to 20 centimeters into the soil, each of them containing only one cell for the deposition of always one egg. As food supply they hunt caterpillars preferrably of Noctuidae, stun them with a sting and carry them to their nests, which will be closed with soil particles afterwards. The last brood hibernates as pupa or larva inside the nest.

Sand wasp Ammophila sabulosa in Berlin, copyrights Stefan F. Wirth, 2018

 

 

Grasshoppers

 

The grasshopper Sphingonotus caerulans is a thermophilic species, which is a typical inhabitant of sandy areas in Southern Europe. It also appears in Berlin. Its eggs are deposited into deeper soil layers and hibernate there.

Grasshopper Sphingonotus caerulans, male, found in Berlin (Köppchensee). Copyrights Stefan F. Wirth, 2018

 

terrestrial Isopods

 

The common woodlouse Oniscus asellus for example hibernates as nymph or mature adult in hideaways inside deeper soil layers, dead wood or compost. These terrestrial curustaceans become inactive, when colder temperatures appear. Specimens can live over several years (usually about two years).

An example for a woodlouse, in this case a mediterranean species of genus Porcellio, copyrights Stefan F. Wirth, 2018

 

Hibernating animal communities

 

Communities of different animal species often hibernate altogether. I focus here on inhabitants of micro habitats. Especially long living insect nests can bear greater numbers of cohabitants. But also deadwood or compost bear many different animal species side by side.

 

Ant nests

 

Nests of the red wood ant Formica rufa represent complex animal communities, as it is typical for ant nests generally. Besides ants and their brood noumerous nematode and mite species inhabit nest mounts of F. rufa. Additionally different larvae of other insect taxa can be members of the ant community, I even discovered the larvae of the green rose chafer sometimes inside red wood ant nests in the area of the Berlin forest Grunewald. Also several species of pseudoscorpions are known to science to be adapted for a survival in nests of F. rufa in Europe: commonly found are for example the species Allochernes wideri and Pselaphochernes scorpioides. Pseudoscorpion species of genus Allochernes are known to practice a dispersal strategy named phoresy. They use bigger and better motile insects as carriers and that way are transferred to new habitats. Besides ants, their suitable phoretic carriers seem to be dipterans. Also different mite and nematode taxa inside nests of the wood ant perform phoresy. A mite example is the species Histiostoma myrmicarum (Acariformes, Histiostomatidae), which seems to be carried by ants and eventually additionally also by other arthropodes.

The larva of the green rose chafer inside a nest of Formica rufa, copyrights Stefan F. Wirth, 2011

Mite Histiostoma myrmicarum (Astigmata) collected from its hibernation habitat in the soil underneath an old oak in Berlin forest Grunewald, copyrights Stefan F. Wirth, 2018

 

Formica rufa itself hibernates inside its nest in absence of eggs, larvae or pupae. Only the queen and workers remain during the cold season. Not much is known about other nest inhabitants. More research is needed.

Typical ant cohabitants (with Formica rufa) do not necessarily need to hibernate inside their ant nests. I collected deutonymphs of the mite Histiostoma myrmicarum in winter 2017/18 from soil (some centimeters deep) underneath an old oak in the absence of ants and their nest. The well scleotized deutonymph (phoretic dispersal juvenile stage) might represent the hibernation stage.

The advantage for organisms, living in ant nests, is a higher and constant temperature due to the ant worker’s nest-care-activities. Additionally the defensive behaviors of ants offer protection for those organisms being adapted (based on evolution) to survive inside ant nests.

Due to suitable temperatures, many organisms inside nests of the red wood ant might stay even active in winter. Interactions between ant nest-cohabitants can be very complex. An example is the Alcon large blue butterfly Phengaris alcon, being adapted to other ant species: Myrmica rudinodis and M. rubra. The caterpillar resembles an ant worker due to the morphology of its cuticle and the production of ant-similar pheromones. Ant workers fail for this imitation, carry the caterpillar into their nests and feed it. The butterfly’s larva hibernates inside the ant nest as larva, molts into pupa in the subsequent spring season and finally leaves the nest as adult butterfly. Still inside the ant nest, the caterpillar can become a victim of the parasitic wasp Ichneumon eumerus. Its female invades the ant nest, only after recognizing that caterpillars of the blue butterfly are indeed inside. It then confuses the antworkers due to the release of different chemicals and then attaches its eggs to the caterpillar. The wasp’s larva hibernates there and molts into its pupa inside the host’s pupa. The adult wasp afterwards leaves the ant nest.

Phoretic mites of the taxon Astigmata inside a nest of Myrmica rudinodis, found on island Usedom, copyrights Stefan F. Wirth

 

Bark beetle galleries

 

Numerous mite and nematode species live inside the galleries of bark beetles. Such a complex fauna is known for many bark beetle species. Additionally the larvae of different other insects can be cohabitants. Depending on the species, they can perform all kinds of life-strategies: being predators of adult bark beetles or their offspring or of other gallery cohabitants, they can also be microorganism feeders and prefer the bark beetle galleries due to its ideal warmth-isolation or due to the specific micro-climate that is created there by the activities of all different inhabitant activities. Besides animals, also fungi and bacteria contribute to that climate.

Bark beetle Hylurgops ligniperda and phoretic mites, copyrights Stefan F. Wirth, 2016

Wood associated nematode Diplogaster sp. found in the tree fungus Laetiporus sulphureus in Berlin, copyrights Stefan F. Wirth, 2016

Mite deutonymphs of the Histiostomatidae mites inside the galleries of the bark beetle Tomicus destruens in Italy, Vesuvio National Forest, copyrights Stefan F. Wirth, 2016

Bark beetle Ips typographus with some of its gallery-cohabitants, such as phoretic mites, found in SW-Germany (Saarland), copyrights Stefan F. Wirth, 2015

 

Furthermore the composition of species in a bark beetle gallery changes with an increasing age of a gallery. Secondary infections are often performed by other wood parasiting beetles, after the bark beetle brood finished its development and left the gallery. A secondary parasitism can for example be performed by longhorned beetles.

The bark beetle Dendroctonus micans for example infests several conifer species: Picea, Abies, Larix and Pinus. This bark beetle can hibernate in all its instars: eggs, larvae or adults. Adults can in spring sometimes be found in specific hibernation-chambers. In a research project with russian collegues, I isolated beetles of that species in the early spring season in Siberia (Russia) out of such a chamber on Pinus silvestris. Adjacent to attached substrate particles, I found nymphal stages of the phoretic mite Bonomoia opuniae, a species of the Histiostomatidae (Astigmata), which was even new to science at that time. I described this species, which I so far only know from those siberian samples. It is still unknown, whether it also appears in Central Europe.

The nymphal stages (protonymphs and tritonymphs) of that mite species might represent the hibernating instars. They were not fallen into a numbness after the collection and even remained active in a refrigerator, where my samples were stored subsequently for a while. I doubt that the mite in winter can pass through different generations as it would happen in a warmer climate, because the found mite nymphs appeared -also active- still rather weak in their cold environment. Thus I assume these nymphs to hibernate throughout the winter season. But there is still much research missing about the ecology/biology of bark inhabiting mites.

Adult beetles of Dendroctonus micans with deutonymphs of Bonomoia sibirica, Tyumen/ Siberia, copyrights Stefan F. Wirth, 2017

 

 

Berlin, December 2018. Copyrights Stefan F. Wirth

 

 

 

 

 

Berlin Forest Grunewald and River Havel-Waterside

River Havel

 

The river Havel has its source in the Mecklenburg Lake Plateau and after 94 km flows in the area of the border between the federal states Brandenburg and Sachsen-Anhalt into the big river Elbe.

Havel runs besides the already mentioned states Brandenburg and Sachsen-Anhalt also through Berlin, the capital city of Germany. On its way, the river passes several bigger and smaller lakes, which serve as water reservoirs, even in hot summers, in which many german rivers and lakes from low water levels.

In its most parts, Havel is navigable, and weirs and locks regulate water levels and water supply.

Historically, Havel since at least 928 of our Western calculation played importent roles as natural border and water route. Through the middle ages up to times of the GDR wetlands as important ecosystems were stepwise drained. In more recent times the protection of unique nature refuges is proceeding. In 2004 for example, the Naturfreunde Deutschlands and the German Fishing Federation elected the Havel area as River Landscape of the year.

In 2005 the Federal Agency for Nature Conservation (BfN) and the Nature Biodiversity Conservation Union (NABU began the land restoration to create refuges for rare bird species , beaver, river lamprey, otters and other animals and plants.

The footage of my video was captured close to the bathing beach area „Lieper Bucht“. Visible are the Havel islands Lindwerder and Schwanenwerder as well as edges of the forest area „Düppeler Forst“.

River Havel and Forest Grunewald in Berlin, quadcopter footage. Copyrights Stefan F. Wirth, December 2018. Please like my video also on youtube, in case you like it.

 

Forest Grunewald

 

Adjacent to the Lieper-Bucht area, the huge urban forest Grunewald extends over 3000 hectare between the Berlin districts Charlottenburg and Zehlendorf.

It was elected as Forest Area of the Year by the Union of German Foresters in 2015. The Grunewald ecologically has a specific mosaic of ecosystems: heathlands, neglected grasslands, dunes, dandpits and marshlands. They all bear a remarkable biodiversity of rare animal and plant species.

Geomorphologically the Grunewald area was formed by galcio-fluvial processess during the Weichselian glaciation , which endet about 11600 years ago. Glacio-fluvial sands cobver the area in layers up to 20 meters and more.

The footage of my video also shows the so called Grunewald Tower. The memorial for the German Emperor  William I was planned in 1897 and finally built up by the architect Franz Schechten. The tower was finally inaugurated in 1899 and renovated between 2007 and 2011.

The footage was captured with a DJI Mavic pro quadcopter in mid December 2018.

 

 

Berlin, December 2018. Copyrights Stefan F. Wirth